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This article about unfractionated heparin (UFH) and
low-molecular-weight heparin (LMWH) is part of the
Seventh American College of Chest Physicians Con-
ference on Antithrombotic and Thrombolytic Ther-
apy: Evidence-Based Guidelines. UFH is a heteroge-
neous mixture of glycosaminoglycans that bind to
antithrombin via a pentasaccharide, catalyzing the
inactivation of thrombin and other clotting factors.
UFH also binds endothelial cells, platelet factor 4,
and platelets, leading to rather unpredictable phar-
macokinetic and pharmacodynamic properties. Vari-
ability in activated partial thromboplastin time
(aPTT) reagents necessitates site-specific validation
of the aPTT therapeutic range in order to properly
monitor UFH therapy. Lack of validation has been
an oversight in many clinical trials comparing UFH
to LMWH. In patients with apparent heparin resis-
tance, anti-factor Xa monitoring may be superior to
measurement of aPTT. LMWHs lack the nonspecific
binding affinities of UFH, and, as a result, LMWH
preparations have more predictable pharmacoki-
netic and pharmacodynamic properties. LMWHs
have replaced UFH for most clinical indications for
the following reasons: (1) these properties allow
LMWHs to be administered subcutaneously, once
daily without laboratory monitoring; and (2) the
evidence from clinical trials that LMWH is as least as
effective as and is safer than UFH. Several clinical
issues regarding the use of LMWHs remain unan-
swered. These relate to the need for monitoring with
an anti-factor Xa assay in patients with severe obesity
or renal insufficiency. The therapeutic range for
anti-factor Xa activity depends on the dosing inter-
val. Anti-factor Xa monitoring is prudent when ad-
ministering weight-based doses of LMWH to patients
who weigh > 150 kg. It has been determined that
UFH infusion is preferable to LMWH injection in
patients with creatinine clearance of < 25 mL/min,
until further data on therapeutic dosing of LMWHs
in renal failure have been published. However, when
administered in low doses prophylactically, LMWH
is safe for therapy in patients with renal failure.
Protamine may help to reverse bleeding related to

LWMH, although anti-factor Xa activity is not fully
normalized by protamine. The synthetic pentasac-
charide fondaparinux is a promising new antithrom-
botic agent for the prevention and treatment of
venous thromboembolism.

(CHEST 2004; 126:188S–203S)
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cardial infarction; PF � platelet factor; RR � relative risk;
rt-PA � recombinant tissue plasminogen activator; SC � subcu-
taneous; TBW � total body weight; UFH � unfractionated hep-
arin

1.0 Heparin: Historical Perspective, Chemical
Structure, and Mechanism of Action

H eparin, a heterogeneous mixture of branched glycos-
aminoglycans, was discovered to have antithrombotic

properties by McLean almost 90 years ago.1 Brinkhous
and associates2 then demonstrated that heparin is an
indirect anticoagulant, requiring a plasma cofactor. This
cofactor was subsequently named antithrombin (AT) III
by Abildgaard in 19683 and now is referred to simply as
AT. The main anticoagulant action of heparin is mediated
by the heparin/AT interaction. The mechanism of this
interaction was elucidated by Rosenberg and colleagues4,5

and Lindahl et al6 in the 1970s. Heparin binds to lysine
sites on AT, producing a conformational change at the
arginine reactive center, which converts AT from a slow,
progressive thrombin inhibitor to a very rapid inhibitor.
The arginine reactive center on the AT molecule binds
covalently to the active center serine of thrombin and
other coagulation enzymes, thereby irreversibly inhibiting
their procoagulant activity.4 Heparin then dissociates from
the ternary complex and is reutilized4 (Fig 1). Subse-
quently, it was discovered that heparin binds to AT
through a unique glucosamine unit4–7 that is contained
within a pentasaccharide sequence.8 The pentasaccharide
has been synthesized and has been developed into a
promising new anticoagulant.9–13 The development of
low-molecular-weight heparin (LMWH) in the 1980s in-
troduced the concept that the ability of heparin molecules
to inactivate thrombin and other activated coagulation
factors are chain length-dependent, whereas the inactiva-
tion of factor Xa only requires the presence of the
high-affinity pentasaccharide.

1.1 Heparin: structure and mechanism of action

Heparin is heterogeneous with respect to molecular
size, anticoagulant activity, and pharmacokinetic proper-
ties (Table 1). Its molecular weight ranges from 3,000 to
30,000, with a mean molecular weight of 15,000 (approx-
imately 45 monosaccharide chains) [Fig 2].14–16 Only
about one third of an administered dose of heparin binds
to AT, and this fraction is responsible for most of its
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anticoagulant effect.17,18 The remaining two thirds of a
dose has minimal anticoagulant activity at therapeutic
concentrations, but at concentrations greater than usually
obtained clinically both high-affinity and low-affinity hep-
arin catalyze the AT effect of a second plasma protein,
heparin cofactor (HC) II.19 At even higher concentrations,
low-affinity heparin impairs factor Xa generation through
AT-independent and HCII-independent mechanisms20

(Table 2).
The heparin/AT complex inactivates thrombin factor IIa

and factors Xa, IXa, XIa, and XIIa.4 Thrombin and factor
Xa are most sensitive to inhibition by heparin/AT, and
thrombin is about 10-fold more sensitive to inhibition than
factor Xa. Heparin inhibits thrombin by binding both to
the coagulation enzyme (through a nonspecific charge
effect) and to AT through the high-affinity pentasaccha-
ride. In contrast, the inhibition of factor Xa requires that
heparin bind only to the AT via the high-affinity pentasac-
charide.7 Molecules of heparin with � 18 saccharides lose
their ability to bind simultaneously to thrombin and AT,
and, therefore, are unable to catalyze thrombin inhibition.

In contrast, very small heparin fragments containing the
high-affinity pentasaccharide sequence catalyze the inhi-
bition of factor Xa by AT.21–24 By inactivating thrombin,
heparin not only prevents fibrin formation but also inhibits
thrombin-induced activation of platelets and coagulation
factors factor V and factor VIII.25–27

Heparin activates HCII and thereby inactivates throm-
bin through a second mechanism. This interaction is
charge-dependent, but is pentasaccharide-independent
and requires a higher concentration of heparin than that
required for AT-mediated inactivation. HCII-mediated
inactivation of thrombin is also molecular weight-
dependent, requiring a minimum of 24 saccharide units.
The HCII-mediated anticoagulant effect of heparin could
operate in cases of severe AT deficiency.

The third anticoagulant effect of heparin results from
an AT-independent and HCII-independent modulation of
factor Xa generation. It is charge-dependent, is mediated
by heparin binding to factor IXa, and requires very high
doses of the sulfated polysaccharide to produce an antico-
agulant effect.20 Although not important clinically, this
direct anticoagulant effect has complicated the develop-
ment of non-anticoagulant heparin preparations for the
prevention of restenosis after angioplasty.

The anticoagulant activity of heparin is heterogeneous
for the following reasons: (1) only one third of heparin
molecules contain the high-affinity pentasaccharide; and
(2) the anticoagulant profile and clearance of heparin is
influenced by the chain length of the molecules. Thus, the
higher molecular weight species are cleared from the
circulation more rapidly than the lower molecular weight
species, resulting in the accumulation of the lower molec-
ular weight species, which have a lower ratio of anti IIa
activity to anti-factor Xa activity. In vitro, heparin binds to
platelets and, depending on the experimental conditions,
can either induce or inhibit platelet aggregation.28,29 High-
molecular-weight heparin fractions with low affinity for
AT have a greater effect on platelet function than LMWH
fractions with high AT affinity.30 Heparin prolongs the
bleeding time in humans31 and enhances blood loss from
the microvasculature in rabbits.32–34 The interaction of
heparin with platelets32 and endothelial cells33 may con-
tribute to heparin-induced bleeding by a mechanism that
is independent of its anticoagulant effect.34

In addition to anticoagulant effects, heparin increases

Figure 2. Molecular weight distributions of LMWHs and
heparin.

Figure 1. Inactivation of clotting enzymes by heparin. Top:
ATIII is a slow inhibitor without heparin. Middle: heparin binds
to ATIII through a high-affinity pentasaccharide and induces a
conformational change in ATIII, thereby converting ATIII from
a slow inhibitor to a very rapid inhibitor. Bottom: ATIII binds
covalently to the clotting enzyme, and the heparin dissociates
from the complex and can be reutilized.

Table 1—Heterogenicity of Heparin

Attribute Characteristics

Molecular size Mean molecular weight, 15,000
Range, 3,000–30,000

Anticoagulant activity Only one third of heparin molecules
contain the high-affinity
pentasaccharide required for
anticaogulant activity

Clearance High-molecular-weight moieties are
cleared more rapidly than lower
molecular weight moieties
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vessel wall permeability,33 suppresses the proliferation of
vascular smooth muscle cells,35 suppresses osteoblast for-
mation, and activates osteoclasts, with these last two
effects promoting bone loss.36,37 Of these three effects,
only the osteopenic effect has been shown to be relevant
clinically, and all three are independent of its anticoagu-
lant activity.38 Warkentin et al, in another article in this
supplement, discuss heparin-induced thrombocytopenia
(HIT) as another clinically important side effect.

1.2 Heparin: pharmacokinetics

The two preferred routes of administration of unfrac-
tionated heparin (UFH) are continuous IV infusion and
subcutaneous (SC) injection. When the SC route is se-
lected, the initial dose should be approximately 10%
higher than the usual IV dose to overcome the reduced
bioavailability associated with SC administration.39 When
heparin is given by SC injection in a dose of 35,000 U over
24 h in two divided doses,40 the anticoagulant effect is
delayed for approximately 1 h, and the peak plasma levels
occur at approximately 3 h. If an immediate anticoagulant
effect is required, the initial dose should be accompanied
by an IV bolus injection.

The plasma recovery of heparin is reduced41 when the
drug is administered by SC injection in low doses (eg,
5,000 U every 12 h) or moderate doses of 12,500 U every
12 h42 or 15,000 U every 12 h.39 However, at high
therapeutic doses (ie, � 35,000 U over 24 h) plasma
recovery is almost complete.43 The difference between the

bioavailability of heparin administered by SC or IV injec-
tion was demonstrated strikingly in a study of patients with
venous thrombosis39 who were randomized to receive
either 15,000 U heparin every 12 h by SC injection or
30,000 U heparin by continuous IV infusion. Both regi-
mens were preceded by an IV bolus dose of 5,000 U.
Therapeutic heparin levels and activated partial thrombo-
plastin time (aPTT) ratios were achieved at 24 h in only
37% of patients who were given SC injections of heparin,
compared with 71% in those who were given the same
total dose by continuous IV infusion.

After entering the bloodstream, heparin binds to a
number of plasma proteins, which reduces its anticoagu-
lant activity, thereby contributing to the variability of the
anticoagulant response to heparin among patients with
thromboembolic disorders44 and to the laboratory phe-
nomenon of heparin resistance.45 Heparin also binds to
endothelial cells46 and macrophages, a property that fur-
ther complicates its pharmacokinetics. The binding of
heparin to von Willebrand factor also inhibits von Wille-
brand factor-dependent platelet function.47

Heparin is cleared through the combination of a rapid
saturable mechanism and a much slower first-order mech-
anisms48–50 (Fig 3). The saturable phase of heparin clear-
ance is thought to be due to binding to endothelial cell
receptors51,52 and macrophages,53 in which it is depoly-
merized40,54 (Fig 4). The slower nonsaturable mechanism
of clearance is largely renal. At therapeutic doses, a
considerable proportion of heparin is cleared through the
rapid, saturable, dose-dependent mechanism. These ki-
netics make the anticoagulant response to heparin nonlin-

Figure 3. Low doses of heparin clear rapidly from plasma
through a saturable (cellular) mechanism and the slower, nonsat-
urable, dose-independent mechanism of renal clearance. Very
high doses of heparin are cleared predominantly through the
slower nonsaturable mechanism of clearance. t1⁄2 � half-life.

Table 2—Antihemostatic Effects of Heparin

Effect Comment

Binds to ATIII and catalyzes inactivation
of factors IIa, Xa, IXa, and XIIa

Major mechanism for anticoagulant effect, produced by only one third of heparin
molecules (those containing the unique ATIII-binding pentasaccharide)

Binds to heparin cofactor II and catalyzes
inactivation of factor IIa

Anticoagulant effect requires high concentrations of heparin and occurs to the same
degree whether the heparin has high or low affinity for ATIII

Binds to factor IX and inhibits factor Xa activation Requires very high concentration of heparin, and is AT- and HCII-independent

Figure 4. As heparin enters the circulation, it binds to heparin-
binding proteins (ie, other plasma proteins), ECs, Ms, and ATIII.
Only heparin with the high-affinity pentasaccharide binds to
ATIII, but binding to other proteins and to cells is nonspecific
and occurs independently of the ATIII binding site.
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ear at therapeutic doses, with both the intensity and
duration of effect rising disproportionately with increasing
dose. Thus, the apparent biological half-life of heparin
increases from approximately 30 min following an IV bolus
of 25 U/kg, to 60 min with an IV bolus of 100 U/kg, to 150
min with a bolus of 400 U/kg.48–50

1.3 Heparin: initial dosing

The initial dosing of heparin for treatment of venous
thromboembolism is weight-based (80 U/kg bolus and 18
U/kg/h infusion).55 Doses of heparin that are administered
to treat patients with coronary thrombosis syndromes are
lower than those typically used to treat those with venous
thromboembolism. The American College of Cardiology
recommends a heparin bolus of 60 to 70 U/kg (maximum
dose, 5,000 U) and the infusion of 12 to 15 U/kg/h
(maximum dose, 1,000 U per hour) for unstable angina
and non-ST-segment elevation myocardial infarction
(MI),56 and somewhat lower dosing (60 U/kg bolus [max-
imum dose, 4,000 U], and 12 U/kg infusion (maximum
dose, 1,000 U per hour) in patients receiving recombinant
tissue plasminogen activator (rt-PA) [alteplase] for acute
ST-segment elevation MI.57 In patients undergoing per-
cutaneous coronary interventions, heparin is administered
in conjunction with glycoprotein IIb/IIIa inhibitors as a
bolus of 70 U/kg, with additional boluses administered to
keep the activated clotting time (ACT) at � 200 s.58

The risk of heparin-associated bleeding increases with
the dose,59,60 and with thrombolytic therapy61–64 or glyco-
protein IIb/IIIa inhibitor therapy.58,65 The risk of bleeding
is also increased if the patient has recently undergone
surgery, trauma, or invasive procedures, or has concomi-
tant hemostatic defects.66 A relationship has been reported
between the dose of heparin administered and both its
efficacy39,55,67 and safety.58,65 Therefore, the dose of hep-
arin must be adjusted, usually by the measurement of the
aPTT, or, when very high doses are given, by ACT. These
tests are sensitive mainly to the AT effects of heparin.

1.4 Heparin monitoring

The anticoagulant effect of heparin is monitored by the
aPTT when usual therapeutic doses are used and by the
ACT when higher doses are used in association with
percutaneous coronary interventions and cardiopulmonary
bypass surgery. In the 1970s, an aPTT in the range of 1.5
to 2.5 times the control value was shown to be associated
with a reduced risk for recurrent thromboembolism.68

Thereafter, a therapeutic aPTT range of 1.5 to 2.5 times
the control value gained wide clinical acceptance.

However, the reagents and instruments used to deter-
mine the aPTT have changed in the past 25 years. Thus,
there are now � 300 different laboratory methods in
current use,69 and as a result there is a wide variation
in responsiveness to an anticoagulant among different
laboratories. This variability is due to differences among
thromboplastin reagents and coagulometer instruments.70–78

The magnitude of this variability is highlighted by the
observation that at plasma heparin concentrations of
0.3 IU/mL (by factor Xa inhibition) the mean aPTT results

range from 48 to 108 s, depending on the laboratory
method employed.70,72 At therapeutic heparin levels (ie,
0.3 to 0.7 anti-factor Xa units), modern thromboplastin
reagents produce aPTT ratios that range from 1.6 to 2.7 to
3.7 to 6.2 times the control value70,72–74,78–84 (Table 3). It
is clear, therefore, that the use of a standard aPTT
therapeutic range of 1.5 to 2.5 for all reagents and
methods of clot detection leads to the systematic admin-
istration of subtherapeutic doses of heparin.

Despite these shortcomings, the aPTT is the most
common method used for monitoring its anticoagulant
response. The aPTT should be measured approximately
6 h after the bolus dose of heparin, and the continuous IV
dose should be adjusted according to the result. Various
heparin dose-adjustment nomograms have been devel-
oped (Tables 485 and 5), but none are applicable to all
aPTT reagents, and, for the reasons discussed above, the
therapeutic range should be adapted to the responsiveness
of the reagent used.

Such problems with standardizing APTT monitoring
have been highlighted in a recent review86 that examined
the methodological quality of heparin administration in
clinical trials comparing heparin and LMWH for the
treatment of venous thrombosis. Of the 16 studies that
met the inclusion criteria,87–102 only 3 used a properly
validated aPTT therapeutic range to make heparin dose
adjustments. Eleven studies used aPTT ranges that in-
cluded values of 1.5 times the control value, which is
invariably associated with subtherapeutic heparin levels
when modern thromboplastin reagents are used, and 7
studies reported that the steady-state dose of heparin was
� 30,000 U per 24 h after adjustment based on aPTT
measurement results. Thus, the true efficacy of heparin in
clinical trials of venous thromboembolism has likely been
underestimated because most of the studies used unvali-
dated aPTT therapeutic ranges and therefore suboptimal
heparin dosing.

It is possible that similar problems with heparin moni-
toring could explain the results of studies103 that have
reported that the aPTT is not a good measure of heparin
efficacy in patients with acute MI who were treated with
thrombolytic therapy. The studies that provide the foun-
dation for recommendations for UFH use in coronary
thrombosis did not calibrate their therapeutic aPTT
ranges by anti-factor Xa assays. Therefore, it is difficult to
accurately reproduce the UFH dose adjustments used in
other institutions. Simply generalizing aPTT therapeutic
ranges would guarantee systematic errors in heparin ad-
ministration in institutions with different thromboplastin
reagents.

The College of American Pathologists104 and oth-
ers69,71,73,75–77,79,80,82,105 have joined the American College
of Chest Physicians consensus group in recommending
against the generalized use of a fixed aPTT therapeutic
range such as 1.5 to 2.5 times the control value. Instead,
we recommend that the therapeutic aPTT range be
calibrated specifically for each reagent lot/coagulometer
by determining the aPTT values that correlate with ther-
apeutic heparin levels (equivalent to 0.3 to 0.7 IU/mL by
factor Xa inhibition for the treatment of venous throm-

www.chestjournal.org CHEST / 126 / 3 / SEPTEMBER, 2004 SUPPLEMENT 191S



bosis. The therapeutic range for coronary indications is
unknown but is likely to have an upper limit of 0.6 IU/mL.

1.5 Heparin resistance

Heparin resistance is a term that is used to define
patients who require unusually high doses of heparin in
order to prolong their aPTT into a therapeutic range.106–108

Several mechanisms for heparin resistance have been
identified, including AT deficiency,104 increased heparin
clearance,109 elevations in heparin-binding proteins,110 and
elevations in factor VIII levels106,111 and fibrinogen lev-
els.111 Aprotinin and nitroglycerin have been reported as
causes of drug-induced heparin resistance,112,113 although
the association with nitroglycerin is controversial.114 Ele-
vated factor VIII level is a common mechanism for
apparent heparin resistance.106 It causes a dissociation of
the anticoagulant effect of heparin, as measured by the
aPTT from heparin levels, as measured by anti-factor Xa
activity.104,108 The results of a randomized controlled
trial106 in patients with venous thromboembolism showed
that patients with heparin resistance, which is indicated by
a requirement for large doses of heparin, achieve equiva-

Table 3—Representative aPTT Therapeutic Ranges for Various Modern Thromboplastin Reagents, Determined by
Recommended Methodology

Reagent Therapeutic aPTT Therapeutic aPTT ratio Reference

Actin* 59–84 2.3–3.2† 71

49–92 to 49–109‡ 1.9–3.7 to 2.1–4.6‡ 69

Actin FS* 60–85 1.8–2.5 67

66–109 2.2–3.6 70

79–105 2.3–3.0 67

64–112 2.2–3.9† 77

55–78 1.9–2.7† 75

81–185 2.6–6.0 79

72–119 to 98–165‡ 2.6–4.3 to 3.7–6.2‡ 69

Actin FSL* 57–98 to 84–124‡ 2.1–3.5 to 2.6–3.8‡ 69

IL Test§ 71–96 2.3–3.1 80

49–109 to 63–101‡ 1.7–3.8 to 1.9–3.3‡ 69

Platelin L� 75–105 2.8–3.9 78

64–106 2.3–3.9 76

55–97 2.1–3.7† 77

Syntasil¶ 70–158 2.0–4.5 79

Thrombosil I¶ 44–75 to 58–112‡ 1.6–2.7 to 2.4–4.5‡ 69

*Dade Diagnostics, Aguada, Puerto Rico.
†aPTT ratios were calculated by dividing the reported therapeutic aPTT range by the control value for the reagent reported in contemporaneous
literature.

‡aPTT therapeutic ranges were obtained with the same reagent but with different coagulometers.
§Instrumentation Laboratories, Fisher Scientific, Unionville, ON, Canada.
�Organon Teknika, Durham, NC.
¶Ortho Diagnostic Systems, Raritan, NJ.

Table 4—Protocol for Heparin Dose Adjustment*

aPTT,† s

Repeat
Bolus

Dose, U

Stop
Infusion,

min

Change Rate (dose)
of Infusion at

40/mL/h,‡ mL/h
Time of

Next aPTT

� 50 5,000 0 � 3 (� 2,880) 6 h
50–59 0 � 3 (� 2,880) 6 h
60–85§ 0 0 (0) Next morning
86–95 0 � 2 (� 1,920) Next morning
96–120 30 � 2 (� 1,920) 6 h
� 120 60 � 4 (� 3,840) 6 h

*Starting dose of 5,000 U as IV bolus followed by 32,000 U per 24 h
as a continuous infusion (40 U/mL). First aPTT measurement was
performed 6 h after the bolus injection, dosage adjustments were
made according to the protocol, and aPTT measurement was
repeated as indicated in the far right column. Table was adapted
from Cruickshank et al.85

†Normal range for aPTT with Dade Actin FS reagent is 27 to 35 s.
‡Values in parentheses are U per 24 h.
§Therapeutic range of 60 to 85 s is equivalent to a heparin level of 0.2
to 0.4 U/mL by protamine titration or 0.35 to 0.7 U/mL as an
anti-factor Xa heparin level. Therapeutic range will vary with
responsiveness of the aPTT reagent to heparin.

Table 5—Weight-Based Nomogram*

aPTT Dose

Initial dose 80 U/kg bolus, then 18 U/kg/h
� 35 s 80 U/kg bolus, then 4 U/kg/h
35–45 s 40 U/kg bolus, then 2 U/kg/h
46–70 s† No change
71–90 s Decrease infusion rate by 2 U/kg/h
� 90 s Hold infusion 1 h, then decrease infusion

rate by 3 U/kg/h

*Table was adapted from Raschke et al.67

†Therapeutic aPTT range of 46 to 70 s corresponded to anti-factor Xa
activity of 0.3 to 0.7 U/mL at the time this study was performed. The
therapeutic range at any institution should be established by
correlation with anti-factor Xa levels in this range.
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lent clinical outcomes with lower doses of heparin when
heparin therapy is adjusted to achieve anti-factor Xa
heparin concentrations of 0.35 to 0.7 IU/mL. The latter is
a reasonable approach in patients with venous thrombo-
embolism who require unusually high doses of heparin
(eg, � 40,000 U per 24 h) to achieve a therapeutic aPTT.

1.6 Limitations of heparin

In addition to its well-known bleeding complica-
tions, heparin has limitations based on its pharmacokinetic
and biophysical properties, its ability to induce immune-
mediated platelet activation (leading to HIT), and its
effect on bone metabolism (leading to heparin-induced
osteoporosis). All of the nonhemorrhagic limitations are
caused by the AT-independent, charge-dependent bind-
ing properties of heparin to proteins and surfaces. Phar-
macokinetic limitations are caused by the AT-independent
binding of heparin to plasma proteins,115 to proteins
released from platelets,40 and possibly to endothelial cells,
which result in the variable anticoagulant response to
heparin and to the phenomenon of heparin resistance;103

AT-independent binding to macrophages and endothelial
cells also result in the dose-dependent mechanism of
clearance.

The biophysical limitations occur because the hepa-
rin/AT complex is unable to inactivate factor Xa in the
prothrombinase complex and thrombin bound to fibrin or
to subendothelial surfaces. The biological limitations of
heparin include osteopenia and HIT. Osteopenia is caused
by the binding of heparin to osteoblasts,36 which then
release factors that activate osteoclasts, whereas HIT
results from heparin binding to platelet factor (PF) 4,
forming an epitope to which the HIT antibody binds.116,117

The pharmacokinetic and non-anticoagulant biological
limitations of heparin are less evident with LMWH,118

while the limited affinity of the heparin/AT complex to
fibrin-bound thrombin and factor Xa has been overcome
by several new classes of AT-independent thrombin and
factor Xa inhibitors.119

The anticoagulant effect of heparin is modified by
platelets, fibrin, vascular surfaces, and plasma proteins.
Platelets reduce the anticoagulant effect of heparin by
protecting surface factor Xa from inhibition by heparin/AT
complex120,121 and by secreting PF4, a heparin-neutralizing
protein.122 Fibrin protects thrombin bound to its surface
from inhibition by heparin/AT complex because heparin
binds to fibrin, and bridges between fibrin and the
heparin-binding site on thrombin.123 As a result, heparin
increases the affinity of thrombin for fibrin and, by
occupying the heparin-binding site on thrombin, protects
fibrin-bound thrombin from inactivation by the hepa-
rin/AT complex.124,125 Thrombin also binds to subendothe-
lial matrix proteins, where it is protected from inhibition
by heparin.126 These observations explain why heparin is
less effective than the AT-independent thrombin and
factor Xa inhibitors123 for preventing thrombosis at sites of
deep arterial injury in experimental animals,127,128 and may
explain why hirudin is more effective than heparin in
patients with unstable angina and non-Q-wave MI.129

1.7 Reversing the anticoagulant effects of heparin

The treatment of clinically severe bleeding in the course
of heparin therapy includes antiheparin therapy in addi-
tion to supportive care and transfusion therapy. The
effects of UFH can be rapidly antagonized by an IV bolus
of protamine. Protamine is a basic protein derived from
fish sperm that binds to heparin to form a stable salt. One
milligram of protamine will neutralize approximately 100
U UFH. Therefore, a patient who bleeds immediately
following an IV bolus of 5,000 U UFH will require the
administration of 50 mg protamine. When UFH is given as
an IV infusion, only heparin given during the preceding
several hours needs to be included in this dose calculation,
since the half-life of IV UFH is short (approximately 60
min). Therefore, a patient receiving a continuous IV
infusion of 1,250 U per hour will require approximately 30
mg protamine. The neutralization of an SC dose of UFH
may require a prolonged infusion of protamine. The aPTT
can be used to assess the effectiveness of antiheparin
therapy.130

The risk of severe adverse reactions, such as hypoten-
sion and bradycardia, can be minimized by administering
protamine slowly (ie, over � 1 to 3 min). Patients who
have previously received protamine-containing insulin,
have undergone a vasectomy, or have a known sensitivity
to fish are at an increased risk to develop antiprotamine
antibodies and to experience allergic reactions, including
anaphylaxis.131,132 Patients who are at risk for protamine
allergy can be pretreated with corticosteroids and antihis-
tamines.

A number of other methods have been used to neutral-
ize the effects of UFH. These include hexadimethrine,133,134

heparinase (neutralase),135 PF4,136,137 extracorporeal
heparin-removal devices,138,139 and synthetic protamine
variants.140 These therapies are not widely available.

2.0 LMWHs: Historical Perspective and
Overview

LMWHs are derived from UFH by chemical or enzy-
matic depolymerization. The development of LMWHs for
clinical use was stimulated by the following three main
observations: (1) LMWHs have reduced anti-factor IIa
activity relative to anti-factor Xa activity15,141; (2) LMWHs
have a more favorable benefit/risk ratio142,143 in animal
studies; and (3) LMWHs have superior pharmacokinetic
properties.144–149 Of these potential advantages, only the
superior pharmacokinetic properties are of clear clinical
importance.118,150

LMWH fractions prepared from standard commercial-
grade heparin have been shown to have a progressively
lower effect on aPTT as they are reduced in molecular
size, while still inhibiting activated factor X (ie, factor
Xa).15,145 The aPTT activity of heparin reflects mainly its
anti-factor IIa activity. The disassociation of anti-factor Xa
activity from its effect on thrombin (IIa) activity (ex-
pressed as an aPTT measurement), which was described in
1976,16 challenged the prevailing biophysical model for
the anticoagulant effect of heparin, which predicted that
any heparin molecule, irrespective of chain length, would
catalyze the inactivation of serine protease coagulation
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enzymes equally, provided that it contained the high-
affinity binding site for AT. The explanation for the
difference in anticoagulant profile between LMWHs and
heparin was elucidated in subsequent studies.151–155

2.1 LMWH: structure and mechanism of action

LMWHs are polysulfated glycosaminoglycans that are
about one third the molecular weight of UFH. LMWHs
have a mean molecular weight of 4,000 to 5,000 d (about
15 monosaccharide units per molecule), with a range of
2,000 to 9,000 d. The various LMWHs approved for use in
Europe, Canada, and the United States are shown in Table
6. Because LMWHs are prepared by different methods of
depolymerization, they differ to some extent in pharma-
cokinetic properties and anticoagulant profiles, and are
not clinically interchangeable.

The depolymerization of heparin yields low-molecular-
weight fragments with reduced binding to proteins or cells
(Table 7). Indeed, all of the anticoagulant, pharmacoki-
netic, and other biological differences between heparin
and LMWH can be explained by the relatively lower
binding properties of LMWH. Thus, compared to heparin,
LMWHs have a reduced ability to inactivate thrombin
because the smaller fragments cannot bind simultaneously
to AT and thrombin. On the other hand, since bridging
between AT and factor Xa is less critical for anti-factor Xa
activity, the smaller fragments inactivate factor Xa almost
as well as larger molecules.156–158 Reduced binding to
plasma proteins is responsible for the more predictable
dose-response relationship of LMWHs.118 A lower inci-
dence of binding to macrophages and endothelial cells
increases the plasma half-life150 of LMWH compared to

UFH, whereas reducing binding to platelets and PF4 may
explain the lower incidence of HIT.159 Finally, the re-
duced binding of LMWH to osteoblasts results in a lower
incidence of activation of osteoclasts and lower levels of
bone loss.36,37

Like heparin, LMWHs produce their major anticoagu-
lant effect by activating AT. The interaction with AT is
mediated by a unique pentasaccharide sequence,7,160

which is found on fewer than one third of LMWH
molecules. Because a minimum chain length of 18 saccha-
rides (which includes the pentasaccharide sequence) is
required for the formation of ternary complexes among
heparin chains, AT, and thrombin, only the 25 to 50% of
LMWH species that are above this critical chain length are
able to inactivate thrombin. In contrast, all LMWH chains
containing the high-affinity pentasaccharide catalyze the
inactivation of factor Xa. Because virtually all heparin
molecules contain at least 18 saccharide units, heparin has
an anti-factor Xa/anti-factor IIa ratio of 1:1. In contrast,
commercial LMWHs have anti-factor Xa/anti-IIa ratios
between 2:1 and 4:1, depending on their molecular size
distribution.

LMWHs have been evaluated in a large number of
randomized clinical trials and have been shown to be safe
and effective for the prevention and treatment of venous
thrombosis. More recently, LMWH preparations also have
been evaluated in patients with acute pulmonary embo-
lism and in those with unstable angina. The pharmacoki-
netic differences between UFH and LMWH can be
explained largely by the decreased propensity for LMWH
to bind proteins, endothelial cells, and macrophages, as
discussed above.

2.2 LMWH: pharmacokinetics

In the 1980s, a number of investigators148–153 reported
that LMWH preparations had superior pharmacokinetic
properties than UFH preparations. LMWHs demon-
strated SC bioavailability approaching 100% at low doses.
Peak anti-factor Xa activity occurred 3 to 5 h after SC
injection, with a more predictable dose response.161 Also,
the elimination half-life of LMWHs was longer (3 to 6 h
after SC injection) and was not dose-dependent, as was the
elimination half-life of UFH. These findings provided the
rationale for comparing unmonitored weight-adjusted
LMWH with aPTT-monitored heparin in patients with
established deep-vein thrombosis (DVT) and in patients
with unstable angina. One pharmacokinetic limitation is

Table 6—Methods of Preparation for LMWHs and a
Heparinoid

Agent Method of Preparation

Nadroparin calcium
(fraxiparin)

Nitrous acid depolymerization

Enoxaparin sodium (lovenox/
clexane)

Benzylation followed by alkaline
depolymerization

Dalteparin (fragmin) Nitrous acid depolymerization
Tinzaparin (innohep) Enzymatic depolymerization with

heparinase
Danaparoid sodium (organ) Prepared from animal gut mucosa;

contains heparin sulfate (84%),
dermatan sulfate (12%), and
chondroitin sulfate (4%)

Table 7—Biological Consequences of Reduced Binding to Proteins and Cells of LMWH Compared to UFH

Binding Target Biologic Effects Clinical Consequences

Thrombin Reduced anti-IIa to anti-factor Xa ratio Unknown
Proteins More predictable anticoagulant response Monitoring of anticoagulant effect unnecessary
Macrophages Cleared through renal mechanism Longer plasma half-life. Once-daily SC treatment effective
Platelets Reduced incidence of heparin-dependent antibody Reduced incidence of heparin-induced thrombocytopenia
Osteoblasts Reduced activation of osteoclasts Lower incidence of osteopenia
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that LMWHs are cleared principally by the renal route,
and their biological half-life is prolonged in patients with
renal failure.162,163

2.3 LMWH: monitoring the antithrombotic effect

LMWHs are typically administered in fixed doses, for
thromboprophylaxis, or in total body weight (TBW)-ad-
justed doses, for therapeutic effect. Laboratory monitoring
is not generally necessary. However, dose-finding trials
have not been carried out in special populations, such as
patients with renal failure or severe obesity. It has been
suggested that monitoring should be considered in such
patients.164–167

Several laboratory assays have been proposed for this
purpose, including the anti-factor Xa assay, and more
globally responsive tests, such as the Heptest (Kappes;
Augsburg, Germany).167,168 Anti-factor Xa activity moni-
toring by a chromogenic assay is the most widely available
and is the test currently recommended by the College of
American Pathologists.169

The relationship between anti-factor Xa levels and
clinical outcomes is not clear-cut. Anti-factor Xa levels
have been shown to be inversely related to thrombus
propagation and the development of thrombosis,170,171 but
the minimal effective level remains uncertain. One
study,175 which utilized continuous IV infusion of daltepa-
rin, showed that an increased risk for bleeding was
associated with steady-state anti-factor Xa levels of � 0.8
u/mL. However, several other studies176–178 in which the
LMWH was given at currently accepted doses by SC
injection failed to show a relationship between anti-factor
Xa level and bleeding. A randomized controlled trial
comparing monitored and unmonitored therapy of venous
thromboembolism with dalteparin showed no benefit of
monitoring.179 Therefore, the routine measurement of
anti-factor Xa levels is not indicated. Rather, it should be
limited to particular patient groups (such as in obesity or
renal failure) because they are potentially more prone to
overdosing when weight-adjusted regimens are used.

After a therapeutic weight-adjusted dose of LMWH is
administered by SC injection, the anti-factor Xa activity
peaks at approximately 4 h, and this is the recommended
time to perform monitoring assays.167,169,180,181 It should be
noted that the measured peak anti-factor Xa activity varies
among individual LMWH preparations given in the same
anti-factor Xa dose, due to variations in pharmacokinet-
ics.182 A conservative therapeutic range for peak effect
with twice-daily administration of enoxaparin or nadropa-
rin is 0.6 to 1.0 IU/mL167,169,180,182 for patients being
treated for venous thromboembolism. In order to avoid an
increased risk of bleeding, levels of � 1.0 IU/mL should
be avoided if the appropriateness of the dose is in question
in patients with renal impairment or severe obesity. The
target range for peak anti-factor Xa effect is less clear in
patients treated with once-daily LMWH, but is likely to be
� 1.0 IU/mL for enoxaparin.169 In patients being treated
for venous thromboembolism, the target mean anti-factor
Xa level, measured approximately 4 h after administration,

for a once-daily tinzaparin dose is 0.85 IU/mL, for na-
droparin it is 1.3 IU/mL, and for dalteparin it is 1.05
IU/mL.182

2.4 Dosing and monitoring in special situations

2.4.1 Obesity

Large contemporary randomized controlled trials of
LMWH have generally used weight-adjusted doses with-
out any ceiling for patients with obesity. Since intravascu-
lar volume does not have a linear relationship with TBW,
it is possible that the use of TBW-based doses in obese
patients could lead to overdosing. Conversely, the use of
fixed doses for thromboprophylaxis in obese patients could
result in underdosing.

Despite these theoretical considerations, anti-factor Xa
activity is not significantly increased when LMWH is
administered to obese patients in doses based on TBW.
This observation has been made for the following drugs:
(1) enoxaparin in patients with TBW up to 144 kg (body
mass index [BMI], 48 kg/m2)183; (2) dalteparin in patients
with TBW up to 190 kg (BMI, 58 kg/m2)184,185; and
tinzaparin in patients with TBW up to 165 kg (BMI, 61
kg/m2).186

Furthermore, an increased number of bleeding compli-
cations have not been observed when LMWH is adminis-
tered in doses based on TBW to obese patients. Thus, in
a meta-analysis that included data on 921 patients with a
BMI of � 30, there was no increase in major bleeding in
obese patients who received LMWH doses adjusted by
TBW.187

Since these studies included few patients with a TBW of
� 150 kg and a BMI of � 50 kg/m2, it would be reason-
able to consider anti-factor Xa testing in such patients.
Dose reduction should be considered if the anti-factor Xa
activity measured 4 h after SC administration is excessive.
(See section 2.4 for a discussion of appropriate peak
anti-factor Xa levels for various LMWH preparations.)
Since the potential source of the dosing error is based on
an uncertain volume of distribution in obese patients,
repeated testing is not necessary.

Data that address the issue of thromboprophylaxis with
fixed-dose LMWHs in obese patients are now available.
There is a strong negative correlation between TBW and
anti-factor Xa activity (R2 � 0.63) in obese patients receiv-
ing fixed-dose thromboprophylaxis therapy with enoxapa-
rin.188 This relationship has also been observed in obese
patients who are critically ill (r � �0.41; p � 0.03).189 The
correlation between TBW and the anti-factor Xa activity of
prophylactic doses of nadroparin is likewise negative, but
is not linear, since weight-adjusted LMWH produced
more than a proportional increase in its anti-factor Xa
activity.190 BMI also was demonstrated to show a positive
correlation with the risk of postoperative venous throm-
boembolism in patients receiving fixed-dose enoxaparin
for thromboprophylaxis after total knee or hip replace-
ment.191 These data suggest that weight-based prophylac-
tic dosing might be preferable to fixed dosing in obese
patients.

Two small prospective trials have examined this issue. A
nonrandomized prospective study192 of enoxaparin, 30 mg

www.chestjournal.org CHEST / 126 / 3 / SEPTEMBER, 2004 SUPPLEMENT 195S



every 12 h, vs enoxaparin, 40 mg every 12 h, in 481
patients undergoing bariatric surgery showed a reduction
in the incidence of postoperative DVT (5.4% vs 0.6%,
respectively; p � 0.01) in the group receiving the 40-mg
dose, with no increase in bleeding complications. How-
ever, a smaller randomized controlled trial193 in 60 pa-
tients who had undergone bariatric surgery showed no
difference in the rate of postoperative DVT between
patients assigned to receive either 5,700 or 9,500 IU SC
nadroparin. Because of its small size, this study did not
exclude clinically important differences in DVT between
the two dosage groups.193 In the absence of clear data, it
seems prudent to consider a 25% increase in the throm-
boprophylactic dose of LMWH in very obese patients (eg,
enoxaparin, 40 mg bid).

2.4.2 Renal failure

The safety of administering standard doses of LMWH
to patients with severe renal insufficiency has not been
clearly established. Large contemporary randomized con-
trolled trials of LMWH have generally excluded patients
with severe renal insufficiency or have failed to specify
whether patients with renal insufficiency were recruited.
However, pharmacokinetic and clinical data have become
available that allow reasonable conclusions to be made
regarding the use of LMWH in these patients.

With few exceptions,194,195 pharmacokinetic studies
have demonstrated that the clearance of the anti-factor Xa
effect of LMWH is strongly correlated with creatinine
clearance (CrCl). This relationship has been shown in
single-dose studies of nadroparin at a CrCl rate of � 50
mL/min196 and of enoxaparin at a CrCl rate of � 20
mL/min.197 The accumulation of anti-factor Xa activity
after multiple doses is of particular concern, and several
multidose pharmacokinetic studies have now been pub-
lished. A strong linear relationship has been demonstrated
between CrCl rate and enoxaparin clearance (r � 0.85;
p � 0.001) in a large study198 of patients receiving thera-
peutic doses of enoxaparin for coronary indications. A
linear correlation was confirmed between CrCl and anti-
factor Xa levels (p � 0.0005) after multiple therapeutic
doses of enoxaparin, with significantly increased anti-
factor Xa levels in patients with a CrCl rate of � 30
mL/min.199 In patients who received multiple prophylactic
doses of enoxaparin, it was shown that the anti-factor Xa
clearance was reduced by 39%, and the exposure (ie, the
area under the curve of anti-factor Xa activity over time)
was increased by 35% in those with a CrCl rate of � 30
mL/min relative to those with a CrCl of � 31 mL/min.200

In full therapeutic doses, nadroparin clearance, but not
tinzaparin clearance, is correlated with CrCl rate
(r � 0.49; p � 0.002)201 down to a CrCl rate as low as 20
mL/min.194 This suggests that there are differences among
LMWH preparations in regard to their dependence on
renal clearance. A review202 of the influence of renal
function on anti-factor Xa activity of LMWH came to the
following conclusions: (1) most well-designed studies
demonstrate increased anti-factor Xa activity in patients
with diminished renal function; (2) the pharmacoki-
netic effect of impaired renal function may differ among

LMWHs; and (3) there is not a single CrCl cutoff value
that correlates with an increased risk of bleeding for all
LMWH preparations.

Renal insufficiency has been reported to increase the
risk of bleeding complications for therapeutic doses of
LMWHs. In a post hoc analysis of data from the Efficacy
and Safety of Subcutaneous Enoxaparin in non-Q-wave
Coronary Events and the Thrombolysis and Thrombin
Inhibition in Myocardial Infarction IIB studies, a CrCl
rate of � 30mL/min was associated with an increased risk
for major hemorrhage in patients receiving enoxaparin
(relative risk [RR], 6.1; 95% confidence interval [CI], 2.47
to 14.88; p � 0.0019 [calculated from data provided]).187

In another study203 of patients with venous thromboem-
bolism or acute coronary ischemia, therapeutic doses of
enoxaparin or tinzaparin yielded a CrCl rate of � 20
mL/min, which was associated with an RR of 2.8 (95% CI,
1.0 to 7.8) for bleeding complications. Finally, in a retro-
spective study204 of patients receiving multiple doses of
enoxaparin, patients with renal insufficiency had an RR for
bleeding complications of 2.3 (p � 0.01) and a RR for
major hemorrhage of 15.0 (p � 0.001).

We recommend using UFH to provide full therapeutic
anticoagulation therapy in patients with severe renal in-
sufficiency. If LMWH is chosen, monitoring should be
performed with therapeutic anti-factor Xa activity, as
outlined in section 2.4. The exact cutoff value in terms of
CrCl for these recommendations probably varies for dif-
ferent LMWHs, but a safe threshold is likely to be 30
mL/min.

Thromboprophylactic LMWH in patients with renal
insufficiency requires separate consideration. Although
increased anti-factor Xa activity was observed in patients
with renal failure who received multiple thromboprophy-
lactic doses of enoxaparin (ie, 40 mg daily), the mean peak
anti-factor Xa level was only 0.6 IU/mL and the trough was
� 0.2 IU/mL.200 These levels have not been clearly asso-
ciated with an increased risk of bleeding. An increased risk
of bleeding complications has not been reported in pa-
tients receiving thromboprophylactic doses of LMWHs. If
enoxaparin is chosen for thromboprophylaxis in a patient
with renal failure, the dose of 40 mg daily seems prefer-
able to the 30 mg bid dose.

2.5 Reversing the antithrombotic effects of
LMWH

There is no proven method for neutralizing LMWH.
Studies in animals and in vitro studies have demonstrated
that protamine neutralizes the antithrombin activity of
LMWH, normalizing the aPTT and thrombin time. How-
ever, protamine appears to only neutralize approximately
60% of the anti-factor Xa activity of LMWH.205–208 The
interaction of protamine and heparin is influenced by the
molecular weight of heparin,209 and it is likely that a lack
of complete neutralization of anti-factor Xa occurs because
of reduced protamine binding to the lower molecular
weight heparin moieties in the preparation.118

The clinical significance of the incomplete anti-factor
Xa neutralization of LMWH by protamine is unclear. In a
small case series, protamine failed to correct clinical
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bleeding associated with LMWH in two thirds of pa-
tients,207 but there are no human studies that have con-
vincingly demonstrated or refuted a beneficial effect of
protamine on bleeding related to the use of LMWH. One
animal study210 reported a reduction in bleeding with
protamine in a microvascular bleeding model, despite
persistent anti-factor Xa activity. Another study211 demon-
strated incomplete attenuation of bleeding.

Recently, a case report212 has been published in which
activated factor VII therapy appeared to be effective in a
patient with postoperative bleeding. In animal studies,
synthetic protamine variants have been shown to be highly
effective in neutralizing the anticoagulant effects of
LMWH (including anti-factor Xa activity), and they ap-
pear to be less toxic than protamine.213–216 Adenosine
triphosphate completely reversed clinical bleeding related
to LMWH in a rat model.217 These agents are not yet
available for clinical use.

The following approach is recommended in clinical
situations in which the antithrombotic effect of LMWH
needs to be neutralized. If LMWH was administered
within 8 h, protamine may be given in a dose of 1 mg per
100 anti-factor Xa units LMWH (1 mg enoxaparin equals
approximately 100 anti-factor Xa units). A second dose of
0.5 mg protamine per 100 anti-factor Xa units may be
administered if the bleeding continues. Smaller doses are
needed if the LMWH was injected � 8 h before the event
requiring neutralization.
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