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Coronary heart disease is the leading cause of death world-
wide, and 3.8 million men and 3.4 million women die of the disease each 
year. After an acute myocardial infarction, early and successful myocardial 

reperfusion with the use of thrombolytic therapy or primary percutaneous coronary 
intervention (PCI) is the most effective strategy for reducing the size of a myocar­
dial infarct and improving the clinical outcome. The process of restoring blood 
flow to the ischemic myocardium, however, can induce injury. This phenomenon, 
termed myocardial reperfusion injury, can paradoxically reduce the beneficial ef­
fects of myocardial reperfusion.

The potentially detrimental aspect of myocardial reperfusion injury, termed lethal 
reperfusion injury, is defined as myocardial injury caused by the restoration of coro­
nary blood flow after an ischemic episode. The injury culminates in the death of 
cardiac myocytes that were viable immediately before myocardial reperfusion.1 This 
form of myocardial injury, which by itself can induce cardiomyocyte death and in­
crease infarct size (Fig. 1), may in part explain why, despite optimal myocardial re­
perfusion, the rate of death after an acute myocardial infarction approaches 10%,2 and 
the incidence of cardiac failure after an acute myocardial infarction is almost 25%.

Studies in animal models of acute myocardial infarction suggest that lethal re­
perfusion injury accounts for up to 50% of the final size of a myocardial infarct, and 
in these models a number of strategies have been shown to ameliorate lethal reper­
fusion injury. Yet, the translation of these beneficial effects into the clinical setting 
has been disappointing.3 Nevertheless, recent demonstrations of the benefit of ische­
mic postconditioning,4 in which myocardial reperfusion in patients with acute myo­
cardial infarction who are undergoing PCI is interrupted with short-lived episodes of 
myocardial ischemia,5-7 have regenerated interest in the reperfusion phase as a target 
for cardioprotection. The identification of the reperfusion injury salvage kinase (RISK) 
pathway 8 and the mitochondrial permeability transition pore (PTP)9,10 as new tar­
gets for cardioprotection has also intensified research in this area. These new de­
velopments should lead to strategies that improve clinical outcomes in acute myo­
cardial infarction and reduce the risk of heart failure after myocardial infarction.11

M yo c a r di a l R eper f usion Inj ur y a nd Cel l De ath

Myocardial reperfusion injury was first postulated in 1960 by Jennings et al.12 in 
their description of the histologic features of reperfused ischemic canine myocar­
dium. They reported cell swelling, contracture of myofibrils, disruption of the sarco­
lemma, and the appearance of intramitochondrial calcium phosphate particles. The 
injury to the heart during myocardial reperfusion causes four types of cardiac dys­
function. The first type is myocardial stunning, a term denoting the “mechanical 
dysfunction that persists after reperfusion despite the absence of irreversible dam­
age and despite restoration of normal or near-normal coronary flow.”13 The myocar­
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dium usually recovers from this reversible form 
of injury after several days or weeks. The second 
type of cardiac dysfunction, the no-reflow phenom­
enon, was originally defined as the “inability to 
reperfuse a previously ischemic region.”14 It refers 
to the impedance of microvascular blood flow en­
countered during opening of the infarct-related 
coronary artery.15 The third type of cardiac dys­
function, reperfusion arrhythmias, is potentially 
harmful, but effective treatments are available.16 
The last type is lethal reperfusion injury. There 
are several comprehensive reviews of myocardial 
stunning,17 the no-reflow phenomenon,15 and re­
perfusion arrhythmias.16

The concept of lethal reperfusion injury as an 
independent mediator of cardiomyocyte death, 
distinct from ischemic injury, has been hotly de­
bated; some researchers have suggested that re­
perfusion only exacerbates the cellular injury that 

was sustained during the ischemic period.18 The 
uncertainty relates to the inability to accurately as­
sess in situ the progress of necrosis during the 
transition from myocardial ischemia to reperfu­
sion.1 As a result, the most convincing means of 
showing the existence of lethal reperfusion injury 
as a distinct mediator of cardiomyocyte death is 
to show that the size of a myocardial infarct can 
be reduced by an intervention used at the begin­
ning of myocardial reperfusion.1,19

Po ten ti a l Medi at or s of Le th a l 
R eper f usion Inj ur y

Oxygen Paradox

Experimental studies have established that the re­
perfusion of ischemic myocardium generates oxi­
dative stress, which itself can mediate myocardial 
injury20 (Fig. 2). Oxidative stress is part of the oxy­
gen paradox,21 in which the reoxygenation of isch­
emic myocardium generates a degree of myocar­
dial injury that greatly exceeds the injury induced 
by ischemia alone.21 The role of oxidative stress 
in lethal reperfusion injury is clouded by the incon­
clusive results of animal and clinical studies22-52 
of cardioprotection by antioxidant reperfusion 
therapy (Table 1).

Oxidative stress during myocardial reperfusion 
also reduces the bioavailability of the intracellular 
signaling molecule, nitric oxide, thereby removing 
its cardioprotective effects. These effects include 
the inhibition of neutrophil accumulation, inacti­
vation of superoxide radicals, and improvement of 
coronary blood flow.53 Nitric oxide reperfusion 
therapy to increase nitric oxide levels can reduce 
the size of a myocardial infarct in animals,54 but 
clinical studies of the antianginal nitric oxide do­
nor nicorandil have reported benefit only in terms 
of improved myocardial reperfusion; results in 
terms of clinical outcomes after an acute myocar­
dial infarction are mixed (Table 1).47-49

Calcium Paradox

At the time of myocardial reperfusion, there is an 
abrupt increase in intracellular Ca2+, which is sec­
ondary to sarcolemmal-membrane damage and 
oxidative stress–induced dysfunction of the sarco­
plasmic reticulum. These two forms of injury over­
whelm the normal mechanisms that regulate Ca2+ 
in the cardiomyocyte; this phenomenon is termed 
the calcium paradox1 (Fig. 2). The result is intra­

70

In
fa

rc
t S

iz
e 

(%
)

60

40

30

10

5

50

20

0

Myocardial ischemia in absence
of  reperfusion
Infarct size, 70%

AUTHOR:

FIGURE:

JOB:

4-C
H/T

RETAKE

SIZE

ICM

CASE

EMail Line
H/T
Combo

Revised

AUTHOR, PLEASE NOTE: 
Figure has been redrawn and type has been reset.

Please check carefully.

REG F

Enon

1st
2nd
3rd

Yellon

1 of 3

09-13-07

ARTIST: ts

35711 ISSUE:

22p3

Myocardial ischemia with reperfusion
Reperfusion reduces infarct size by 40%
Part of the remaining 30% infarct is due

to lethal reperfusion injury and
is therefore preventable

Myocardial ischemia with reperfusion
and cardioprotection

Preventing lethal reperfusion injury reduces
infarct size by a further 25%, realizing the

full benefits of reperfusion 

Figure 1. Contribution of Lethal Reperfusion Injury to Final Myocardial  
Infarct Size.

This hypothetical scheme shows the large reduction in myocardial infarct 
size obtained by early and successful myocardial reperfusion after a sus-
tained episode of acute myocardial ischemia. The full benefits of myocardi-
al reperfusion are not realized because of the presence of lethal reperfusion 
injury, which diminishes the magnitude of the reduction in infarct size elic-
ited by myocardial reperfusion. This concept is revealed by the further re-
duction in myocardial infarct size obtained by preventing lethal reperfusion 
injury with the administration of a cardioprotective intervention at the be-
ginning of myocardial reperfusion. Infarcted myocardium is depicted in 
pink, and the viable, at-risk myocardium is stained red. Infarct size is ex-
pressed as a percentage of the volume of myocardium at risk for infarction.
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cellular and mitochondrial Ca2+ overload, and this 
excess of Ca2+ induces cardiomyocyte death by 
causing hypercontracture of the heart cells and 
mitochondrial PTP opening1 (Fig. 2). Attenuating 
intracellular Ca2+ overload with pharmacologic an­
tagonists of the sarcolemmal Ca2+ ion channel, 
the mitochondrial Ca2+ uniporter, or the sodium–
hydrogen exchanger decreases myocardial infarct 
size by up to 50% in experimental studies.55-57 
However, the results of the corresponding clini­
cal studies have been negative.27,29 That inhibition 
of sodium–hydrogen exchange at the time of PCI 
does not protect the myocardium during an acute 
myocardial infarction is consistent with the results 
of experimental studies in which the beneficial 
effects of inhibiting sodium–hydrogen exchange 
were shown to occur during myocardial ischemia 
and not reperfusion (Table 1).29,58 MCC-135, the 
first in a new class of agents that reduce intra­
cellular Ca2+ loading by inhibiting the sodium–
hydrogen exchanger and promoting Ca2+ uptake 
by the sarcoplasmic reticulum, has also not influ­
enced infarct size when given during reperfusion 
(Table 1).30

pH Paradox

The rapid restoration of physiologic pH during 
myocardial reperfusion, which follows the wash­
out of lactic acid and the activation of the sodium–
hydrogen exchanger and the sodium–bicarbonate 
symporter, contributes to lethal reperfusion injury 
(Fig. 2). This phenomenon is termed the pH par­
adox.59 In neonatal rat cardiomyocytes, experimen­
tal studies have shown that reoxygenation with 
acidic buffer is cardioprotective60; this effect may 
be mediated by the inhibition of mitochondrial PTP 
opening.61 However, in clinical studies, delaying 
the restoration of physiologic pH during myocar­
dial reperfusion using sodium–hydrogen exchange 
inhibition did not protect the heart (Table 1).29,58

Inflammation

After an acute myocardial infarction, the release of 
chemoattractants draws neutrophils into the in­
farct zone during the first 6 hours of myocardial 
reperfusion, and during the next 24 hours they 
migrate into the myocardial tissue. This process is 
facilitated by cell-adhesion molecules. These neu­
trophils cause vascular plugging and release deg­
radative enzymes and reactive oxygen species 
(Fig. 2).62

Experimental studies have shown reductions in 
infarct size of up to 50% with several interventions 
aimed at neutrophils during myocardial reper­
fusion. These interventions include leukocyte-
depleted blood63; antibodies against the cell-adhe­
sion molecules P-selectin,64 CD11 and CD18,65 and 
the intercellular adhesion molecule 166; and phar­
macologic inhibitors of complement activation.67 
However, the corresponding clinical studies have 
not shown any meaningful cardioprotective effect 
of such interventions (Table 1).32-38

After inconclusive experimental studies,68,69 
clinical studies of the antiinflammatory agent 
adenosine as an adjunct to PCI have shown an 
11% reduction in the size of myocardial infarcts, 
but benefits in terms of clinical outcomes were 
limited to patients presenting within 3 hours af­
ter the onset of symptoms (Table 1).39,40

Metabolic Modulation

Several experimental and numerous clinical stud­
ies have examined the cardioprotective potential of 
therapy with glucose, insulin, and potassium ad­
ministered as an adjunct to myocardial reperfu­
sion.70,71 These studies have been conducted on the 
premise that ischemic myocardium benefits more 
from metabolizing glucose than from fatty acids.72 
A recent very large, randomized, controlled study 
from several centers reported no cardioprotective 
benefit from therapy with glucose, insulin, and po­
tassium as an adjunct to myocardial reperfusion 
in patients with acute myocardial infarction (Ta­
ble 1).41 The delay in initiating this therapy, the 
prolonged period of myocardial ischemia, and high 
and potentially damaging glucose levels have all 
been cited as reasons for the lack of cardioprotec­
tion.71 The effect of therapy with glucose, insulin, 
and potassium administered in the ambulance to 
patients with acute myocardial infarction before 
myocardial reperfusion has occurred is being in­
vestigated in the Immediate Metabolic Myocardial 
Enhancement During Initial Assessment and Treat­
ment in Emergency Care (IMMEDIATE) trial.42

Magnesium Therapy

Experimental studies have reported that intrave­
nous magnesium administered during myocardial 
reperfusion can reduce myocardial infarct size, but 
the mechanism of this effect is unclear.73 Initial 
clinical studies of adjunctive reperfusion therapy 
with magnesium in patients with acute myocardial 
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infarction were inconclusive; the timing of its 
administration was not sufficiently controlled.43,44 
However, subsequent trials with magnesium ad­
ministered immediately before PCI have also not 
shown cardioprotection (Table 1).45,46

Therapeutic Hypothermia

Mild hypothermia (33 to 35°C) has been reported 
to benefit patients surviving a cardiac arrest.74 Ex­
perimental studies have shown a 10% reduction in 
myocardial infarct size for every 1°C decrease in 
body temperature75; mild hypothermia reduces 
myocardial infarct size in human-sized pigs.76 
However, initial clinical studies of therapeutic hy­
pothermia in patients with acute myocardial in­
farction who are undergoing primary PCI have 
not shown any beneficial effects (Table 1).50-52

Mitochondrial PTP

The mitochondrial PTP is a nonselective channel 
of the inner mitochondrial membrane. Opening 
the channel collapses the mitochondrial membrane 
potential and uncouples oxidative phosphorylation, 
resulting in ATP depletion and cell death.9 Dur­
ing myocardial ischemia, the mitochondrial PTP 
remains closed, only to open within the first few 
minutes after myocardial reperfusion in response 
to mitochondrial Ca2+ overload, oxidative stress, 
restoration of a physiologic pH, and ATP deple­
tion.61,77 Therefore, the mitochondrial PTP is a 
critical determinant of lethal reperfusion injury, 
and as such it is an important new target for car­
dioprotection.

Ta rge ting Le th a l  
R eper f usion Inj ur y

Experimental studies have shown that interven­
tions during myocardial reperfusion can reduce 
myocardial infarct size by up to 50%, suggesting 
that lethal reperfusion injury contributes to up to 
half of the final myocardial infarct size. However, 
the disappointing attempts to translate the bene­
ficial effects that were shown in animal models 
into clinical practice have raised the question of 
whether such infarct models are relevant to myo­
cardial infarction in people.3 Several reasons have 
been proposed for the disparity between findings 
in animals and in patients (Table 2).3,79 In the clin­
ical setting, the varying degrees of ischemia in an 

Figure 2. Major Mediators of Lethal Reperfusion Injury.

During myocardial reperfusion, the acute ischemic 
myocardium is subjected to several abrupt biochemical 
and metabolic changes, which compound the changes 
generated during the period of myocardial ischemia. 
These changes include mitochondrial reenergization 
(purple), the generation of reactive oxygen species 
(ROS) (orange), intracellular Ca2+ overload (green), the 
rapid restoration of physiologic pH (blue), and inflam-
mation (red), all of which interact with each other to 
mediate cardiomyocyte death through the opening of 
the mitochondrial permeability transition pore (PTP) 
and the induction of cardiomyocyte hypercontracture. 
During myocardial reperfusion, ROS are generated by 
xanthine oxidase (mainly from endothelial cells) and 
the re-energized electron transport chain in the cardio-
myocyte mitochondria. Several hours later, a further 
source of ROS is NADPH oxidase (mainly from neutro-
phils). ROS mediate myocardial injury by inducing  
mitochondrial PTP opening, acting as neutrophil che-
moattractants, mediating dysfunction of the sarcoplas-
mic reticulum and contributing to intracellular Ca2+ 
overload, damaging the cell membrane by lipid peroxi-
dation, inducing enzyme denaturation, and causing di-
rect oxidative damage to DNA. During myocardial re-
perfusion, the already Ca2+-overloaded cardiomyocyte 
is subjected to a further influx of Ca2+ through a dam-
aged sarcolemmal membrane, ROS-mediated dysfunc-
tion of the sarcoplasmic reticulum, and reverse func-
tion of the Na+–Ca2+ exchanger. The generation of ATP 
by the reenergized electron transport chain in the set-
ting of intracellular Ca2+ overload induces cardiomyo-
cyte death by hypercontracture, a process that is facili-
tated by the rapid restoration of physiologic pH during 
myocardial reperfusion. Furthermore, the restoration 
of the mitochondrial membrane potential drives the 
entry of Ca2+ into mitochondria that, in conjunction 
with the loss of the inhibitory effect of the acidic pH on 
the mitochondrial PTP and the generation of ROS, act 
in concert to mediate the opening of the mitochondrial 
PTP. This opening induces cardiomyocyte death by un-
coupling oxidative phosphorylation and inducing mito-
chondrial swelling. During myocardial reperfusion, the 
rapid washout of lactic acid together with the function 
of the Na+–H+ and Na+–HCO3 transporters mediate 
the rapid restoration of physiologic pH, facilitating mi-
tochondrial PTP opening and cardiomyocyte hypercon-
tracture. Several hours after the onset of myocardial re-
perfusion, neutrophils accumulate in the infarcted 
myocardial tissue in response to the release of the che-
moattractants (ROS, cytokines, and the activated com-
plement). The up-regulated cell-adhesion molecules 
P-selectin, CD18 and CD11, and intracellular adhesion 
molecule 1 (ICAM-1) then facilitate the migration of 
neutrophils into the myocardial tissue, where they 
mediate cardiomyocyte death by causing vascular 
plugging, releasing degradative enzymes, and gener-
ating ROS.
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acute myocardial infarction can cause the loss of 
innate cardioprotective adaptations such as ische­
mic preconditioning and postconditioning within 
different regions of the ischemic myocardium. 
This heterogeneity could contribute to the incon­
clusive results of clinical studies. Furthermore, of 

the interventions examined so far, many may have 
been of questionable benefit in preclinical studies 
or were given to patients at a dose and schedule that 
had not been validated in studies in animals.

As a way forward, and in agreement with the 
working group of the National Heart, Lung, and 
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Blood Institute (NHLBI) charged with investigat­
ing the recurring issue of the lack of clinical trans­
lation of preclinical findings,3 only agents that 
have been conclusively shown to be cardioprotec­
tive in experiments in animals by multiple inves­
tigators should be investigated in the clinical 
setting.78

Ne w S tr ategies for Pr e v en ting 
Le th a l R eper f usion Inj ur y

Targeting individual mediators of lethal reperfu­
sion injury has produced discrepant findings in 
studies in animals, and clinical studies that use 
this strategy have not been successful. A more ef­
fective approach may be to target more than one 
mediator at a time (Fig. 3). The recently described 
interventional strategy of ischemic postcondition­
ing, which by its nature targets several mediators 
of lethal reperfusion injury, has been shown to 
reduce myocardial injury in patients with acute 
myocardial infarction who are undergoing PCI.5 
These findings, along with a number of preclini­
cal studies,8,19,80 have not only re-ignited interest 
in the myocardial reperfusion phase as a target for 
cardioprotection, but they also have provided con­
firmatory evidence of the existence of lethal re­
perfusion injury in humans (Table 3).85,86 Further­
more, the RISK pathway 8 and the mitochondrial 
PTP 9 are emerging as new targets for preventing 
lethal reperfusion injury (Fig. 3).

Ischemic Postconditioning

In 2003, Zhao et al.4 showed that after a 45-min­
ute episode of sustained myocardial ischemia, the 
interruption of myocardial reperfusion with three 
30-second cycles of myocardial ischemia and re­
perfusion could reduce the myocardial infarct size 
in dogs from 47% to 11%.4 They named this form 
of cardioprotection ischemic postconditioning, a 
term that highlights the myocardial reperfusion 
phase as a target of cardioprotection, although in 
reality it constitutes another variant of modified 
myocardial reperfusion.87 

The mechanism of ischemic postconditioning–
induced protection is not fully understood, but the 
procedure has been shown to target the important 
mediators of lethal reperfusion injury by reducing 
oxidative stress, decreasing intracellular Ca2+ over­
load, improving endothelial function, attenuating 
apoptotic cardiomyocyte death, reducing neutro­

phil accumulation,88 and delaying the restoration 
of neutral pH.89 Furthermore, ischemic postcon­
ditioning activates the RISK pathway 8 and inhib­
its the opening of the mitochondrial PTP 9 — 
both important ways of protecting against lethal 
reperfusion injury. Ischemic preconditioning, a 
phenomenon in which the size of a myocardial 
infarct is reduced by initiating episodes of tran­
sient myocardial ischemia and reperfusion be­
fore the sustained ischemic episode, appears to 
inhibit lethal reperfusion injury through the 
same mechanisms as ischemic postcondition­
ing.90

Several small studies have used ischemic 
postconditioning in patients with acute myocar­
dial infarction who are undergoing PCI with a 
protocol that has reduced myocardial infarct 
size by 36% and improved myocardial reperfu­
sion (Table 3).5-7 The effect of ischemic postcon­
ditioning on clinical outcomes remains to be 
determined, however.85,86

A closely related strategy for preventing lethal 
reperfusion injury is to initiate, at the time of 
myocardial reperfusion, transient episodes of 
ischemia and reperfusion in a tissue or an organ 
remote from the heart. This phenomenon is 
termed remote ischemic postconditioning.91 Pre­
liminary clinical trials are under way to deter­
mine whether transient upper-limb ischemia can 
reduce myocardial injury in patients with acute 
myocardial infarction who are undergoing PCI. 
Given the invasive nature of the ischemic post­
conditioning protocol and its restriction to pa­
tients with acute myocardial infarction who are 
undergoing PCI, the use of pharmacologic agents 
that recruit the signal-transduction pathway ac­
tivated by ischemic postconditioning may be a 
more effective strategy.

Targeting the RISK Pathway

The RISK pathway 92 refers to a group of protein 
kinases that, when specifically activated during 
myocardial reperfusion, confer cardioprotection 
by preventing lethal reperfusion injury 8,19; in a 
sense, the RISK pathway mediates a form of pro­
grammed cell survival. There is extensive pre­
clinical evidence that activation of the RISK path­
way by pharmacologic agents8,80 or by mechanical 
interventions such as ischemic preconditioning 
or postconditioning90 reduces myocardial infarct 
size by up to 50%. The cardioprotection has been 
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Table 2. Major Differences between Animal Models and Clinical Studies of Patients with Acute Myocardial Infarction.*

Characteristic Animal Models Clinical Studies Comments

Subjects Most studies use a homogeneous 
group of healthy, relatively 
young animals free of coexist-
ing illnesses.

Studies use heterogeneous, middle-
aged patient populations with 
coexisting illnesses such as dia-
betes, hypertension, and dyslip-
idemia, all of which may influ-
ence cardioprotection.

Encourage the use of older animals 
with coexisting illnesses such as 
diabetes, hyperlipidemia, athero-
sclerosis, and hypertension to en-
sure cardioprotection is possible 
in these settings.

Medication In most studies, the animals are 
receiving no other medication.

Patients may be taking different 
medications that may influence 
cardioprotection.

Ensure that patients are not receiving 
medication that could interfere 
with cardioprotection.

Period of acute myocar-
dial ischemia 

Beneficial effects with cardiopro-
tection are observed after rela-
tively short periods of isch-
emia, ranging from 30 to 60 
min. The animals are subjected 
to the same duration and se-
verity of ischemia.

Most patients present with longer 
periods of ischemia, ranging 
from 3 to 12 hr. Both the dura-
tion and severity of ischemia vary 
between patients within the 
same study; these factors may 
influence cardioprotection. 

Consider selecting certain patient 
groups such as those presenting 
early (<3 hr) after symptom onset 
or those with an anterior myocardi-
al infarction. Alternatively, use more 
clinically relevant animal models 
such as a human-sized pig subject-
ed to a long period of ischemia.

Reperfusion time Most studies assess cardioprotec-
tion after relatively short peri-
ods of reperfusion, ranging 
from 120 min to 3 days.

Much longer periods of reperfusion 
occur in patients, permitting 
time for the effects of infarct 
healing and left ventricular re-
modeling to take place.

Encourage the use of a longer period 
of reperfusion in studies in ani-
mals.

Infarction model In most studies, acute coronary 
occlusion is mechanically in-
duced in healthy coronary ar-
teries.

An acute myocardial infarction is an 
acute inflammatory condition. In 
most patients with this condi-
tion, acute coronary occlusion is 
due to thrombus formation at a 
site of a ruptured coronary ath-
erosclerotic plaque.

Consider using more clinically relevant 
animal models such as animals 
with atherosclerotic hearts.

Intervention Many of the interventions admin-
istered at the time of myocardi-
al reperfusion have not shown 
conclusive cardioprotection.

If interventions have not shown con-
clusive cardioprotection in exper-
imental studies, they are also un-
likely to be cardioprotective in 
the clinical setting.

In the clinical setting, use only inter-
ventions rigorously shown in ex-
perimental studies to be conclu-
sively cardioprotective. A potential 
approach would be the use of the 
intervention in a multicenter, ran-
domized, controlled study in the 
animal model.†

Timing of intervention The timing of the intervention rela-
tive to the period of ischemia 
and the onset of myocardial re-
perfusion is similar in all ani-
mals.

The timing of the intervention rela-
tive to the period of ischemia 
and the onset of myocardial re-
perfusion varies between pa-
tients. The timing of the inter-
vention should be guided by the 
studies in animals.

Consider selecting certain patient 
groups, such as those presenting 
after a specific time. In clinical 
studies, ensure that the interven-
tion is administered before myo-
cardial reperfusion. 

Infarct size Varies from 30% to 60% of the  
total volume of myocardium at 
risk, providing a greater scope 
for cardioprotection.

Infarct sizes of 13% to 16% ex-
pressed as a percentage of left 
ventricular volume (using 
SPECT) appear to be the normal 
range, which may limit the scope 
for cardioprotection.

Encourage the use of more accurate 
measurement of infarct size using 
delayed-enhancement cardiac mag-
netic resonance imaging, which can 
express infarct size as a percentage 
of the ischemic risk area. 

End points for cardio-
protection

Most studies use recovery of left 
ventricular function or myocar-
dial infarct size as the mea-
sured end points.

The clinically relevant end points are 
outcomes such as short-term 
and long-term effects on illness 
and death.

Consider more robust end points in 
studies in animals, such as long-
term effects on left ventricular 
function and death. 

*	SPECT denotes single-photon-emission computed tomography.
†	Data are from Bolli et al.3 and Baxter et al.78

The New England Journal of Medicine 
Downloaded from nejm.org at UNIVERSITY OF STELLENBOSCH on November 22, 2012. For personal use only. No other uses without permission. 

 Copyright © 2007 Massachusetts Medical Society. All rights reserved. 



T h e  n e w  e ng l a nd  j o u r na l  o f  m e dic i n e

n engl j med 357;11  www.nejm.org  september 13, 20071130

attributed to inhibition of mitochondrial PTP open­
ing,93 improved uptake of Ca2+ in the sarcoplasmic 
reticulum,94 and the recruitment of antiapoptotic 
pathways.19

Pharmacologic agents such as glucagon-like 
peptide 1,95 erythropoietin,96 atorvastatin,97 and 
atrial natriuretic peptide,98 all of which reduce in­
farct size by activating the RISK pathway, are being 
examined in proof-of-concept studies in patients 
with acute myocardial infarction who are under­
going PCI (Table 3).49,82,83 A recent clinical study 
has shown that high-dose atorvastatin given to 
patients with a non–ST-elevation myocardial in­
farction at the time of urgent PCI reduces myo­
cardial injury during PCI.84

Protein kinase C is another potential prosur­
vival protein kinase implicated in cardioprotec­
tion; in animal infarct models, activation of the 
cardioprotective protein kinase C epsilon isoform 
or inhibition of the pro-injurious protein kinase 
C delta isoform reduces myocardial infarct size 
when administered during myocardial reperfu­
sion.99 A preliminary clinical study has reported 
reduced myocardial infarct size in patients under­
going primary PCI who were given intracoronary 

KAI-9803, an inhibitor of protein kinase delta,  
during myocardial reperfusion (Table 3).81

Targeting the Mitochondrial PTP

Proof-of-concept clinical studies are in progress to 
determine whether pharmacologic suppression of 
mitochondrial PTP opening by an intravenous bo­
lus of cyclosporine, administered immediately be­
fore PCI, confers cardioprotection during an acute 
myocardial infarction (Table 3). Pharmacologic in­
hibition of mitochondrial PTP opening during 
myocardial reperfusion with the use of cyclospo­
rine or sanglifehrin A reduces myocardial infarct 
size in studies in animals by up to 50%, suggesting 
that mitochondrial PTP opening may contribute to 
half of the final infarct size.10,100 Furthermore, 
mice lacking cyclophilin D (a key component of the 
mitochondrial PTP) have been reported to sustain 
smaller myocardial infarcts than control ani­
mals.101 Pharmacologic inhibition of mitochon­
drial PTP in human atrial trabeculae subjected to 
simulated ischemia–reperfusion injury is also car­
dioprotective.102 Studies are under way to investi­
gate the mitochondrial PTP as a target for cardio­
protection in the clinical setting. However, more 
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Figure 3. New Cardioprotective Strategies for Reducing Lethal Reperfusion Injury.

For patients with an acute myocardial infarction, ischemic postconditioning or pharmacologic agents that activate the reperfusion injury 
salvage kinase (RISK) pathway or inhibit the opening of the mitochondrial permeability transition pore (PTP), or a multitargeted phar-
macologic approach before or during the immediate onset of myocardial reperfusion, may attenuate lethal reperfusion injury and reduce 
the final myocardial infarct size.
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Table 3. New Cardioprotective Strategies for Reducing Lethal Reperfusion Injury in Patients with Acute Myocardial Infarction.*

Cardioprotective  
Strategy and Source

No. of  
Patients

Period of  
Ischemia

Timing of  
Intervention Details of Study Clinical End Points

hr

Ischemic postconditioning

Staat et al.5 30 5.5 During PCI Four 60-sec low-pressure in-
flations and deflations of 
coronary-angioplasty bal-
loon immediately after 
stent deployment 

Reduced infarct size by 36% 
and improved myocardial 
reperfusion 

Laskey6 17 5.7 During PCI One 90-sec inflation and de-
flation of coronary-angio-
plasty balloon immediate-
ly after stent deployment 

Improved ST-segment reso-
lution and coronary blood 
flow 

Ma et al.7 94 7 During PCI Three 30-sec low-pressure in-
flations and deflations of 
coronary-angioplasty bal-
loon immediately after 
stent deployment 

Reduced infarct size, im-
proved wall-motion score 
index, increased myocar-
dial reperfusion, and im-
proved endothelial func-
tion 

Atrial natriuretic peptide

Kitakaze et al.49 569 Before PCI Intravenous infusion Reduced infarct size by 15%, 
improved LVEF by 5%, 
and improved myocardial 
reperfusion, but no effect 
on mortality; reduced 
composite end point of 
cardiac death and cardiac 
failure

Protein kinase C–delta  
inhibitor (KAI-9803)

Roe81 150 Before PCI Intracoronary bolus of KAI-
9803

Reduced infarct size and im-
proved ST-segment reso-
lution 

Glucagon-like peptide 1

Nikolaidis et al.82 21 6.3 3 hr after PCI Intravenous glucagon-like 
peptide 1 given to pa-
tients with poor LVEF

Improved LVEF from 29% 
 to 39% 

Darbepoetin alfa  
(a long-acting eryth-
ropoietin analogue)

Lipsic et al.83 22 3.3 Before PCI Intravenous bolus of darbe-
poetin alfa 

Mobilized endothelial progen-
itor cells but no effect on 
left ventricular function

Remote ischemic postcondi-
tioning

Before PCI Remote ischemic postcondi-
tioning using transient 
upper-limb ischemia 

In progress

Atorvastatin84 171 Before PCI High-dose atorvastatin ad-
ministered 12 hr before 
PCI 

Reduced myocardial injury 
during PCI

Mitochondrial PTP inhibi-
tion

Before PCI Intravenous bolus of cyclo-
sporine

In progress 

*	LVEF denotes left ventricular ejection fraction, PCI percutaneous coronary intervention, and PTP permeability transition pore.
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specific and safer inhibitors of mitochondrial PTP 
opening need to be developed in order to take ad­
vantage of this strategy.

 Wavefront of Reperfusion Injury

There is emerging experimental evidence that myo­
cardial infarct size can increase with the duration 
of myocardial reperfusion, suggesting a potential 
wavefront of myocardial reperfusion injury medi­
ated by apoptosis and the inflammation-induced 
death of cardiomyocytes.103 These findings raise 
the possibility of reducing myocardial infarct size 
by intervening late in myocardial reperfusion with 
the use of antiapoptotic and antiinflammatory 
agents.104

This new strategy and the strategies described 
above for preventing lethal reperfusion injury are 
important because they protect cardiomyocytes by 
means of a mechanism that is effective in all ex­
perimental studies; this mechanism also under­
lies the cardioprotective phenomena of ischemic 
preconditioning and ischemic postconditioning. 
Large clinical trials will be required to ensure that 
these new cardioprotective strategies improve clin­
ical outcomes in patients with acute myocardial 
infarction. Such new cardioprotective strategies 
may also benefit patients who sustain acute myo­
cardial ischemia–reperfusion injury during coro­
nary-artery bypass grafting or cardiac-transplant 
surgery and patients surviving a cardiac arrest.

Conclusions

For patients presenting with an acute myocardial 
infarction, early and successful myocardial reper­
fusion by means of thrombolytic therapy or pri­
mary PCI is the most effective interventional strat­
egy for reducing infarct size and improving clinical 
outcomes. The process of myocardial reperfusion 

itself, however, can induce injury to the myocar­
dium, thereby reducing the beneficial effects of 
myocardial reperfusion. The cardiomyocyte death 
associated with the irreversible, lethal form of myo­
cardial reperfusion injury diminishes the infarct-
reducing effects of myocardial reperfusion by in­
dependently inducing cardiomyocyte death. For 
this reason, lethal reperfusion injury would be ex­
pected to adversely affect clinical outcomes after 
an acute myocardial infarction, and it may contrib­
ute to the mortality despite early and successful 
reperfusion.

Until recently, the efficacy that has been shown 
for most cardioprotective agents in animal mod­
els has been difficult to confirm in clinical trials. 
There is, however, general agreement that ischemic 
preconditioning and postconditioning are cardio­
protective not only in animal hearts but also in 
human hearts. The increasing understanding of 
the mechanism of the protection, particularly with 
regard to the RISK pathway and the inhibition of 
mitochondrial PTP opening, has led to the devel­
opment of new pharmacologic interventions to 
invoke the mechanism at the time of reperfusion 
(Fig. 3). These pathways, which can target all of 
the known mediators of lethal reperfusion injury, 
have already been shown to reduce lethal reperfu­
sion injury in small-scale trials of patients with 
acute myocardial infarction who are undergoing 
PCI.5,7 These clinical results have regenerated in­
terest in the reperfusion phase as a target for car­
dioprotection. Preliminary clinical data indicate 
that these new cardioprotective strategies confer 
a benefit to patients with acute myocardial infarc­
tion over and above that provided by myocardial 
reperfusion alone, but they remain to be con­
firmed in large-scale clinical studies.
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