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Abstract Diabetes mellitus is one of the most common

chronic diseases across the world. Cardiovascular compli-

cation is the major morbidity and mortality among the

diabetic patients. Diabetic cardiomyopathy, a new entity

independent of coronary artery disease or hypertension, has

been increasingly recognized by clinicians and epidemi-

ologists. Cardiac dysfunction is the major characteristic of

diabetic cardiomyopathy. For a better understanding of

diabetic cardiomyopathy and necessary treatment strategy,

several pathological mechanisms such as impaired calcium

handling and increased oxidative stress, have been pro-

posed through clinical and experimental observations. In

this review, we will discuss the development of cardiac

dysfunction, the mechanisms underlying diabetic cardio-

myopathy, diagnostic methods, and treatment options.
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Introduction

Diabetes mellitus (DM) is a major chronic disease affecting

a large population across the world. It has been estimated

that there will be 300 million people with diabetes by 2050

[1]. Cardiovascular diseases, especially coronary artery

disease (CAD), account for 70% deaths among diabetic

patients. In addition to clear CAD influence, in 1972,

Rubler reported several diabetic patients with heart failure

under normal coronary artery condition and subsequently

brought up a new clinical entity—diabetic cardiomyopathy

[2]. With experimental and clinical study for 30 years,

diabetic patients and animals have been recognized with

increasing risk to develop cardiovascular disease including

heart failure even without CAD or hypertension. Diabetic

cardiomyopathy is considered as depressed ventricular

function, which further results in pathologically myocar-

dial, structural, and functional changes. To date, several

pathological mechanisms underlying diabetic cardiomy-

opathy have been proposed and we are attempting here to

review the current knowledge on this topic.

Cardiac dysfunction

The concept of diabetic cardiomyopathy is defined as

ventricular dysfunction without evidence of CAD or

hypertension. Diabetic patients are at increasing risk to

develop CAD and hypertension. However, the existence of

diabetic cardiomyopathy is considered to occur even

without presence of CAD or hypertension. Diabetic car-

diomyopathy is a specific cardiomyopathy, which may

affect the myocardium secondary to diabetes. This car-

diomyopathy may in fact occur in combination with CAD

or hypertension, and therefore be a significant contributing

factor to diabetic fatality. In either clinic or animal

experiments, however, in order to isolate diabetic cardio-

myopathy, CAD and hypertension have been excluded.

Therefore, diabetic cardiomyopathy is a disease develop-

ment affecting myocardial remodeling and eventually leads

to cardiac diastolic and systolic dysfunction.
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Diastolic dysfunction

Diastolic dysfunction is a major characteristic in diabetic

cardiomyopathy. Initially, scientists recorded cardiac

dynamic parameters using cardiac catheterization and

demonstrated a decrease in left ventricle end-diastolic

volume and an increase end-diastolic pressure in diabetic

patients without CAD [3]. However, the abnormal diastolic

function in patients was mainly studied by using Doppler

techniques. It has been reported that there is a significant

impairment in diastolic function in individual with Type 1

and Type 2 diabetes but even without CAD and HF [4].

Study on Type 2 diabetic patients with normal blood

pressure and glucose levels implicated over 50% diastolic

abnormality compared to healthy controls [5, 6]. Further-

more, animal model of Type 2 diabetes, Zucker diabetic

fatty (ZDF) rat and db/db mice, presented a diastolic dys-

function in left ventricle. Independent of atherosclerosis,

these animal models were characterized with insulin

resistance, obesity, and different level of hyperglycemia,

which might lead to cardiac complications [7, 8]. Scientists

using db/db mouse model assumed a possible mechanism

underlying Type 2 diabetes related diastolic dysfunction.

They proposed an increased fatty acid uptake by and

altered calcium homeostasis in cardiomyocytes, which

caused an elevated cardiac triglyceride concentration and

contractile dysfunction. Decreased contractility is associ-

ated with impaired sarcoplasmic reticulum (SR) Ca2?

release, which probably exerts an impact on diastolic

abnormality [9–11]. Detailed calcium homeostasis in dia-

betic cardiomyocytes may be directly related to diastolic

dysfunction and needs further investigation.

Systolic dysfunction

Systolic dysfunction is the reduced myocardial ability of

ejecting blood, which is a later development after diastolic

dysfunction occurring in diabetic cardiomyopathy. Although

several studies have confirmed that systolic dysfunction is

associated with diabetes, there is a lack of specific and

conclusive reports [12]. Clinically, standard two dimen-

sional (2D) echocardiography may possibly miss the detec-

tion of subtle systolic dysfunction. Recently, a couple of

sensitive methods, such as tissue Doppler strain analysis, can

detect systolic abnormalities in diabetic patients with dia-

stolic dysfunction [13–15]. Besides, experimental investi-

gations in rodent models implicated systolic dysfunction by

magnetic resonance imaging and pressure–volume loop

measurement in both Type 1 and Type 2 diabetes [16–18].

Clinical evidence from diabetic patients reveals, with

decreased systolic function, a shortened ejection time and

prolonged pre-ejection along attenuated relaxation of left

ventricle ejection fraction [19]. More careful investigation of

cardiac systolic function in diabetic animal model may

clarify this issue further.

Pathological mechanisms

Rodent is considered as an ideal animal model to study

potential mechanisms underlying diabetic cardiomyopathy

owing to relatively resistant to develop atherosclerosis,

which provides researchers the diabetic cardiomyopathy

without contribution of CAD [20]. Currently, several dia-

betic rodent models have been developed, such as strep-

tozotocin (STZ) induced diabetic model, to reflect the Type

1 diabetes; and diet-induced obesity and diabetes model, to

represent the Type 2 diabetes. Genetic modified models,

such as ob/ob and db/db, are also used to study the

pathology of Type 2 diabetes. Although rodents have dif-

ferent cardiac cycle, ion channel expression and contractile

protein isoforms from human, they have very similar

genomes with human, and have typical diabetic phenotypes

such as hyperglycemia, insulin deficiency, and insulin

resistance [21]. These characteristics further result in dia-

betic cardiomyopathy through cellular pathological chan-

ges, which may be composed of impaired calcium

handling, increased oxidative stress, altered metabolism,

mitochondrial dysfunction, cardiac autonomic neuropathy,

activation of renin-angiotensin system, and abnormal ion

channel activity [22, 23]. In following sections, we will

discuss these underlying mechanisms in details.

Impaired calcium handling

Intracellular calcium (Ca2?) performs a significant role in

regulating cardiac contractile function. In cardiomyocytes,

the mechanism of calcium-induced calcium release initi-

ates the myocardial contraction by increasing intracellular

calcium concentration via activation of Ca2? channel,

activation of ryanodine receptor, and reduced sodium/

calcium exchanger process [24]. For relaxation to occur,

intracellular calcium concentration [Ca2?]i decreases to

diastolic level through activated sarcoplasmic reticulum

(SR) Ca2? pump (SERCA2a), increased sodium/calcium

exchanger process and activation of sarcolemmal Ca2?

ATPase to speed up Ca2? uptake [25]. In diabetic cardio-

myocytes, calcium homeostasis is altered by reduced

activity of sodium/calcium exchanger and ATPase and

decreased sarcoplasmic reticulum Ca2? uptake [26, 27].

Isolated Type 1 diabetic rat cardiomyocytes exhibit the

decreased activity of ryanodine receptor and SR Ca2?

ATPase associated with attenuated SR Ca2? store and

reduced Ca2? efflux via sodium/calcium exchanger [28].

Studies on Type 2 diabetes animal model also display the

depressed Ca2? efflux and SR Ca2? load and reduced
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expression of ryanodine receptor [29]. Furthermore, in both

Type 1 and Type 2 diabetes, decreased expression of

SERCA2a and sodium/calcium exchanger is observed

[30, 31]. Noda et al. [32] demonstrated, in isolated diabetic

cardiomyocytes, a declined contraction amplitude and

lower relaxation velocity compared to controls. Mito-

chondrial investigation on diabetic models has suggested

that reduced calcium uptake is closely related to the

development of hyperglycemia. STZ-induced diabetic rats

showed a lower calcium uptake in cardiomyocytes versus

that in controls [33]. It has also been revealed that accu-

mulated calcium is not preserved by diabetic cardiomyo-

cytes owing to an increased opening of mitochondrial

permeability transition pore (MPTP) [34]. Therefore, these

investigations implicated impaired calcium homeostasis in

diabetic hearts, result in decreased cardiac contractility and

dilation.

Increased oxidative stress

Increased production of reactive oxygen species (ROS) is

another major progression of diabetic cardiomyopathy. It

has been reported that approximately 90% ROS is pro-

duced by mitochondria in myocardial tissue [35]. Mito-

chondria produced ROS can cause protein damage by

oxidation or lipids oxidation to form lipid peroxidation

products, causing protein or phospholipid damage. ROS is

also able to increase DNA damage which is caused by

reduced activity of DNA repairing pathways, especially the

pathway involved in mitochondrial DNA repairing [36].

Moreover, interaction between ROS and nitric oxide (NO)

generates nitrotyrosine species may lead to impaired

mitochondrial respiration. Experimental study on human

myocardial samples reveals that cardiomyocyte apoptosis

is associated with an increase in 3-nitrotyrosine [37].

Similar evidence is also obtained in STZ-induced Type 1

diabetes model [38]. In addition, tyrosine nitration is

involved in cardiac mitochondrial protein in Type 1 dia-

betic mice. It is reported that increased 3-nitrotyrosine is

associated with increased apoptosis in myocardial tissue

[39]. Overexpression of antioxidant protein, metallothio-

nein, is proven to reduce nitration damage [38]. Similar

investigation on Type 1 diabetic OVE26 mice implicated

that overexpressed metallothionein is able to normalize

oxidized glutathione and recover contractile dysfunction

[40]. Thus, these evidences have demonstrated oxynitrate

damage pathway in diabetic cardiomyopathy.

ROS defense mechanism is involved in oxidative dam-

age as well. Manganese superoxide dismutase (MnSOD) is

a major antioxidant, which preserves cardiomyocytes from

superoxide-induced damage by converting superoxide to

H2O2 [41]. Data from db/db mice of Type 2 diabetes have

revealed that the upregulation of MnSOD activity is

associated with an increased mitochondrial H2O2 [42].

Type 1 diabetes mouse model study also shows an

increased level of MnSOD, leading to normalized mito-

chondrial morphology and cardiac function [43]. In con-

trast, declined ROS scavenging proteins in cardiomyocyte

cytosol compartment contribute to oxidative damage in the

cells in diabetes [44].

Despite the mitochondrial ROS production, generated

ROS from cytosol in myocardial tissue also plays an

important role in diabetes. Advanced glycation end (AGE)

products and increased nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase activity contribute to oxida-

tive damage, even rising mitochondrial ROS [45, 46]. It has

been hypothesized that AGE formation is associated with

hyperglycemia, resulting in cytosolic ROS production

induced by AGE receptor; and the whole process eventu-

ally causes MPTP opening and mitochondrial dysfunction

[45]. It has been reported that cytosolic ROS induced

MPTP opening in cardiac ischemia [47]. In fact, an anti-

diabetic medicine, metformin, has a working mechanism to

cause inhibition of MPTP opening in diabetic rats [48].

Altered metabolism

Elevated fatty acid (FA) uptake contributes significantly to

the development of diabetic cardiomyopathy. Generally,

constant ATP production is strongly linked to appropriate

FA and glucose oxidation by continuous demand of the

heart. However, in diabetic myocytes, metabolism utiliza-

tion shift to higher level free FA and decreased glucose

substrate because of insulin resistance and hyperlipidemia.

A significantly elevated utilization of free FA by cardio-

myocytes has been demonstrated in human and animal

studies [23, 49–51]. In responding to increased level of

myocardial FA, the nuclear receptor transcription factor,

peroxisome proliferator-activated receptor (PPAR), in

cardiomyocytes is activated via mitochondrial beta-oxida-

tion through over-expression of necessary enzymes [52].

PPAR-alpha is responsible for the FA utilization pathway

and regulates FA uptake and oxidation by controlling

expression of necessary enzymes [53]. Deficient PPAR-

alpha animal model investigation revealed a decreased FA

oxidation and reduced activity in FA utilization pathway

[54]. In contrast, PPAR-alpha is increased with insulin-

resistance in another animal model study [55]. In addition,

free FA is able to cause lipid accumulation by inhibiting

pyruvate dehydrogenase, which is detrimental to myocar-

dial energy production [56]. Lipid accumulation leads to

the production of non-oxidative molecules—ceramide, a

lipid-toxic product. It has been reported that increased

ceramide generation is associated with contractile dys-

function and cell apoptosis [57]. Increased myocardial

oxygen consumption is closely related to FA utilization,
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which caused relative cardiac ischemia due to significantly

high level oxygen used by FA oxidation [58, 59]. Duncan

et al. [55] demonstrated the reduced ATP production asso-

ciated with increased FA oxidation in obese-induced diabetic

mice, which suggested a reduced efficiency of cardiac

mitochondria function. Similarly, study on Type 2 diabetic

animal models implicated increased mitochondrial oxygen

consumption and FA oxidation accompanied by a decreased

cardiac efficiency and function [60]. Clinical evidence from

women with insulin resistance also showed that the increased

FA oxidation caused cardiac inefficiency, which might fur-

ther result in decreased cardiac function [61].

Mitochondrial dysfunction

It has been widely reported that mitochondrial dysfunction is

closely associated with diabetic cardiomyopathy [62, 63].

Thirty years ago, scientists demonstrated impaired function

of mitochondrial respiration in db/db mice model, indicating

diabetes probably induced mitochondrial structural and

functional alteration [64]. Recent study reveals that a

decreased mitochondrial respiration is closely linked to

down-regulation of oxidative phosphorylated protein in

diabetic mice, suggesting impaired cardiac contractility

caused by reduced ATP production [65]. Furthermore,

decreased oxidative capacity of mitochondria has been

observed in Type 1 diabetic mice model [66]. It has also been

demonstrated that lower level of ATP synthesis is associated

with reduced activity of mitochondrial oxidation, which may

contribute to the decrease in calcium uptake and cardiac

dysfunction [67]. Mitochondrial functional un-coupling is a

major contributor to mitochondrial dysfunction. ATP syn-

thesis is tightly coupled with increased oxidative activity of

mitochondria. Lower level of creatine phosphorylation

occurs with reduced ATP synthesis protein in STZ-induce

diabetic hearts, which is associated with attenuated mito-

chondrial function [68]. In addition, over-expression of beta-

oxidation proteins has been found in diabetic hearts with

down-regulation of electron transport proteins; and

increased beta-oxidation decreases electron transportation

resulting in reduced ATP production in mitochondria

[62, 69]. Diabetic ob/ob mice investigation exhibits reduced

ATP generation with higher consumption of oxygen in

mitochondria, proving existence of mitochondrial uncou-

pling in diabetic cardiomyopathy [65].

Cardiac autonomic neuropathy (CAN)

Diabetic cardiovascular autonomic neuropathy is associ-

ated with sympathetic and parasympathetic dysfunction in

the myocardium, contributing to the impaired diastolic

function [70]. Study on Type 1 diabetic patients without

ischemic heart disease showed that severe CAN was

correlated with abnormal cardiac diastolic filling [71].

Higher level of ventricular fibrillation was reported in

diabetic patients, suggesting high sympathetic activity in

diabetes [72]. Besides, ventricular filling abnormalities are

most prominent in patients with autonomic neuropathy

[73]. In addition to abnormal diastolic filling, an abnormal

systolic blood pressure in response to standing up was

significantly associated with reduced mitral E/A ratio (ratio

of early to late peak mitral filling wave velocities). The E/A

ratio has been shown to be significantly reduced in patients

with autonomic neuropathy, suggesting a significant cor-

relation between E/A ratio and autonomic neuropathy [74].

Studies also revealed that parasympathetic dysfunction was

associated with abnormal cardiac function. It was reported

that lower level of heart rate variation during deep

breathing was correlated with abnormal diastolic peak

filling rate in diabetic patients [75].

Diabetic vasculopathy and microangiopathy

In diabetes, a reduction was found in coronary blood flow

reserve without apparent CAD [76]. Vascular remodeling

and vasomotor symptom are cumulatively enhanced by

increased production of glycated proteins and in particular

an increased vascular growth factors, which are caused by

impaired NO production due to hyperglycemia [76]. Some

observational studies reported that vascular endothelial

growth factor (VEGF) might perform a significant role in

response to cardiac injury. Studies on diabetic and insulin-

resistant rats revealed that VEGF mRNA and protein level

expression were decreased in myocardium [77]. However,

clinical evidence from patients with myocardial infarction

suggested that the expression of VEGF mRNA was dra-

matically increased in cardiomyocytes [78]. Animal study

also reported that down-regulation of VEGF probably

contributed to the development of diabetic cardiomyopa-

thy. It is also revealed that cardiac dysfunction was nor-

malized after gene transfer of a plasmid encoded human

VEGF into cardiomyocytes [79]. Besides, study on STZ-

induced diabetic rats demonstrated that impaired angio-

genic response and reduced VEGF were correlated with

increased expression of endothelin 1 in ventricles whereas

antagonism of endothelin receptor normalized VEGF sig-

naling and cardiac dysfunction [80].

Pathologically, microangiopathy may considerably

impact on diabetic cardiomyopathy. Abnormal permeability

of diabetic capillaries causes periarterial fibrosis and focal

subendothelial proliferation and fibrosis, leading to micro-

angiopathic alterations such as arteriolar thickening, capil-

lary microaneurysm, and capillary density reduction [81].

Myocardial and ventricular hypertrophy may be the result of

endothelial dysfunction and abnormal protein synthesis in

endothelial cells, which facilitate the attachment of
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leukocytes and monocytes [82]. Study on diabetic patients

without overt CAD also showed that distal atherosclerosis is

associated with coronary microangiopathy [83].

Activation of the renin–angiotensin system (RAS)

In the development of diabetic cardiomyopathy, activation

of RAS has been well recognized. Experimental evidence

has suggested the activation of RAS, which is associated

with increased oxidative damage, endothelial cell and

cardiomyocyte apoptosis, further causes increased cardiac

fibrosis and contractile dysfunction [37]. It has been

reported that angiotensin-receptor signaling pathway cau-

ses the elevated oxidative activity by NADPH, resulting in

the oxidative damage of cardiomyocytes to apoptosis and

the increased interstitial fibrosis [84]. Moreover, the

increase in angiotensin-II induces a production of ROS,

which leads to oxidative damage to cardiomyocyte and

endothelial cell apoptosis [85, 86]. Angiotensin-II is also a

recognized factor to induce ischemia by causing calcium

overloading in cardiomyocytes through reduced activities

of sodium/calcium exchanger, sodium/hydrogen exchanger

and opening of T-type calcium channels. Up-regulation of

RAS may induce myocardial ischemia in diabetic heart

through these mechanisms [87–89].

In STZ-induced diabetic rats, inhibition of RAS and use

of antioxidant are shown to decrease the production of

ROS, which reduces the cardiac dysfunction via restoration

of sarcoplasmic calcium handling and reverse of the SR

Ca2? loading [90, 91]. Similarly, insulin-like growth fac-

tor-1 (IGF-1) has been shown to reduce RAS, which leads

to the decrease in cardiac apoptosis and the slow-down of

development of diabetic cardiomyopathy [92, 93].

Ion channel abnormalities

Altered metabolism causes reduced Ca2? uptake as dis-

cussed above, and changes ion channel activity in cardio-

myocytes. Decreased [Ca2?]i transients triggered by

electrical stimulations have been reported in diabetic

cardiomyocytes, following reduced caffeine induced SR

calcium release, which lead to the depressed cardiac con-

tracture [94–96]. Combined with decreased activity of SR

calcium pump, it is believed that altered cardiac action

potential may be involved in diabetic cardiomyopathy.

Experimental study on diabetic rat hearts implicated an

increase in calcium currents, a decrease in calcium-inde-

pendent transient outward currents (Ito) and prolonged

action potential [97–101]. Diminished Ito may prolong the

duration of calcium influx through voltage-gated calcium

channels, resulting in the delayed repolarization of cardiac

action potential [102, 103]. Increased action potential

duration in diabetic cardiomyocytes induces depressed

sodium/calcium exchanger activity, result in the inhibition

of calcium efflux and constant elevation of intracellular

calcium concentration, which may be responsible for car-

diac diastolic dysfunction—typical phenotype of diabetic

cardiomyopathy [99]. Voltage-clamp study exhibits

depressed Ito activity in isolated diabetic cardiomyocytes,

which is normalized to control level by insulin treatment

[104]. It has been proposed that inhibition of Ito is atten-

uated by decreased glucose phosphorylation activation of

thioredoxin system. Reducing activity of thioredoxin

inhibits the increase in Ito by insulin. It is, therefore, sug-

gested that Ito activity is regulated by redox pathway of

thioredoxin system [105]. Diabetic cardiomyopathy is so

far linked to an increase in Ca2? currents and a decrease in

the Ito current and prolonged action potential duration.

Detailed biophysical analysis of ion channel kinetics and

functional coupling of ion channel modification to cardiac

function warrant further careful single cell studies.

Mechanisms so far proposed above for the diabetic

cardiomyopathy are summarized in Table 1, although fur-

ther confirmation and detailed analysis are needed to

establish pathology of the disease (Table 1).

Human studies

Diabetes mellitus is a well-recognized risk factor to

develop heart failure (HF) and the existence of diabetic

cardiomyopathy has been suggested by many epidemiolo-

gists and clinicians [106]. Study on diabetic patients

reveals that, compared to age-matched control subjects, the

frequency of HF is twice in diabetic men and five times in

diabetic women [107]. Despite CAD or hypertension, the

incidence of HF in diabetic patients increases persistently.

Study on diabetic population shows that cardiac structural

alteration is consistent with systolic dysfunction and left

ventricular (LV) hypertrophy, suggesting subsequent

development of HF particularly in the presence of CAD or

hypertension [108–111]. As discussed above, diastolic

dysfunction is the major characteristic in diabetic cardio-

myopathy patients, which may eventually develop to sys-

tolic dysfunction [112]. Echocardiography performed on

Type 1 diabetic patients without overt CAD revealed that

diastolic dysfunction was associated with increased atrial

filling, decreased early diastolic filling, increased number

of supraventricular premature beats and extended isovolu-

metric relaxation [113]. Study on patients with Type 1

diabetes without clear macrovascular or microvascular

complications showed early structural and functional

changes such as left ventricular (LV) wall thickness,

ejection fraction reduction and increased diastolic diameter

[114]. Similar study on Type 2 diabetic patients reported

over 30% subjects diagnosed with diastolic dysfunction
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[115, 116]. Clinical study with flow and tissue Doppler

techniques showed up to 60% subjects with diastolic dys-

function in both Type 1 and Type 2 diabetic patients

without apparent CAD [117, 118].

Diagnostic methods

Compared to pathological mechanisms, epidemiologists

and clinicians mainly focus on the diagnosis of diabetic

cardiomyopathy. Clinically, diabetic patients may take

several years to develop overt diabetic cardiomyopathy.

Thus, it is very important to detect the disease before the

apparent HF.

Echocardiography is able to detect significant cardiac

abnormalities before the onset of symptomatic HF. Early

cardiac abnormalities are mainly characterized by diastolic

dysfunction, which is in the presence of depressed LV

ejection fraction with a reduction in early diastolic filling,

an increase in atrial filling and prolongation of isovolu-

metric relaxation [119]. A large amount of echocardiog-

raphy studies demonstrated that increased LV mass was

associated with micro-albuminuria, reduced LV systolic

chamber size and abnormal LV function [106, 120, 121].

Study on diabetic patients with or without hypertension

also showed that aortic stiffness was associated with

abnormal diastolic function, suggesting that aortic stiffness

may play a role in the development of LV hypertrophy and

diastolic dysfunction in diabetic patients by increasing end-

systolic wall stress [122].

Tissue Doppler echocardiographic imaging (TDI) pro-

vides a high-velocity, low-amplitude filter to myocardium,

enabling the assessment of myocardial tissue velocity. TDI is

capable of differentiate the independent alterations from pre-

loaded results, contributing a particular tool for defining

systolic and diastolic dysfunction [123]. TDI also quantifies

circumferential and longitudinal cardiac contraction. Radial

(short-axis) contraction of the LV is dependent on the

integrity of the circumferential myocardial fibres, whereas

longitudinal (long-axis) contraction depends on the integrity

of the longitudinal fibres. Because of ventricular remodeling,

ischemia and fibrosis cause relative increase in short-axis

velocity compared to a decrease in long-axis function [124].

3D echocardiography has been validated the superiority

compared to 2D echocardiography in examining LV

function. This new technique has not been applied to

clinical practices yet. 3D echocardiography is not depen-

dent on geometric assumptions to calculate LV volumes,

which enable it to assess odd shapes, abnormal wall motion

in ventricles and cardiomyopathy in patients [125]. Cur-

rently, Real-time 3D echocardiography is applied to

experimental rats to investigate regional LV systolic and

diastolic dysfunction [126].

Although there are several other diagnostic methods,

such as computed tomography (CT), magnetic resonance

imaging (MRI) and single photon emission CT (SPECT),

echocardiography is still the matured and wide-used tech-

nique in clinic cardiomyopathy diagnosis. Additionally,

echocardiography is considered to be a useful tool to

evaluate the presence of systolic and diastolic dysfunction

and LV hypertrophy in diabetic patients.

Treatments

Several reagents have been shown to cause beneficial effect

on diabetic cardiomyopathy. IGF-I has been proven as a

treatment for diabetic cardiomyopathy. It is able to

improve cardiomyocyte insulin sensitivity and facilitate

glucose metabolism [127]. IGF-I also normalizes the

Table 1 Summary of proposed mechanisms responsible for diabetic cardiomyopathy

Cause Mechanism

Impaired calcium handling Altered calcium homeostasis by reducing Na?/Ca2? exchanger activity, SERCA activity and SR Ca2? uptake

Increased oxidative stress Increased ROS production, AGE formation and association between ROS and NO lead to myocardial apoptosis

and cardiac ischemia

Altered metabolism Decreased glucose oxidation and increased FA-beta oxidation cause cardiac inefficiency, pyruate oxidation

results in apoptosis

Mitochondrial dysfunction Attenuated ATP production and mitochondrial uncoupling

Cardiac autonomic

neuropathy

Decreased sympathetic/parasympathetic myocardial innervation with impaired ventricular diastolic filling

Vasculopathy and

microangiopathy

Abnormal VEGF expression leads to cardiac dysfunction and diabetic capillaries cause periarterial fibrosis

Activation of RAS Myocardial fibrosis and apoptosis

Ion channel abnormalities Depressed Ito activity and prolonged action potential may be responsible for cardiac diastolic dysfunction

Na?/Ca2? sodium/calcium exchanger, SERCA sarcoplasmic reticulum Ca2?-ATPase, SR sarcoplasmic reticulum, ROS reactive oxygen species,

AGE advanced glycation end-product, NO nitric oxide, FA fatty acid, VEGF vascular endothelial growth factor, RAS renin-angiotensin system,

Ito calcium-independent transient outward current

Endocrine (2012) 41:398–409 403

123



calcium homeostasis in diabetic cardiomyocytes, prevent-

ing the decrease in SERCA level and improving cardiac

contractility in diabetics [128]. Study on diabetic rats

cardiomyocytes showed normalized contractile capacity

after IGF-I treatment. In addition, IGF-I may increase

cardiac output and eject volume [129].

The angiotensin-converting enzyme inhibitors, such as

captopril, also show the beneficial in the treatment of

diabetic cardiomyopathy [130]. Captopril is capable of

decreasing ventricular hypertrophy and capillary network

remodeling, attenuating extracellular matrix proteins pro-

liferation [131]. In addition to captopril, angiotensin-

converting enzyme inhibitors can decelerate sodium-

hydrogen exchange, the angiotensin II-modulated stimu-

lation, lessening ischemia-induced calcium overload [132].

Treatment with b-blockers shows decreased extracellu-

lar matrix proteins and regressed cardiac hypertrophy in

diabetic rat hearts [133]. Carvedilol, a third generation

b-blocker, has shown additional beneficial effects such as

antioxidant and antiproliferative in diabetic cardiomyopa-

thy [134]. Treatment with carvedilol also showed a sig-

nificant reduction in mortality in patients with HF [135].

Future research

As discussed above, proposed mechanisms underlying

diabetic cardiomyopathy have widely broaden the pathol-

ogy of disease through animal models and human patients.

Although some treatment options have been suggested,

specific therapeutic target of diabetic cardiomyopathy

remain unknown. Clinical trials have been performed on

limited number of patients and data is not conclusive.

Therefore, epidemical and clinical study may be employed

on the base of large number of patients with diabetic car-

diomyopathy in the future. In addition, a large number of

cellular and molecular investigations have been performed

in the past decades. The mechanisms underlying diabetic

cardiomyopathy are still controversy. Hence, specific

mechanisms or clinical factors closely linked to diabetic

cardiomyopathy need to be demonstrated in future study.

Besides, single cardiomyocyte study of diabetic cardio-

myopathy may provide valuable data to clarify the patho-

logical mechanisms. Overall, clarification of pathogen of

diabetic cardiomyopathy will provide therapeutic and

diagnostic targets.

Summary

Diabetes mellitus has been recognized as the major mor-

bidity and mortality for decades. In addition to CAD and

hypertension, diabetic patients have a great chance to

develop cardiovascular diseases, which are induced by

hyperglycemia, insulin resistance and insulin deficiency.

Clinical evidence and experimental data on diabetes have

demonstrated diabetic cardiomyopathy, which is associated

with cardiac structure remodeling and functional ineffi-

ciency. Recent studies on diabetic patients and animal

models have elucidated possible mechanisms underlying

Fig. 1 Proposed mechanism of

impaired cardiac function in

diabetes. RyR ryanodine

receptor, NCX sodium/calcium

exchanger, SERCA2a
sarcoplasmic reticulum Ca2?-

ATPase 2a, SR sarcoplasmic

reticulum, AP action potential,

PPARa peroxisome proliferator-

activated receptpr alpha, FA
fatty acid, ROS reactive oxygen

species
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diabetic cardiomyopathy and provided novel insights of

cellular and pathophysiological pathways in cardiovascular

complications in diabetes, including diabetic cardiomyop-

athy (show in Fig. 1). Although several treatments have

been provided beneficial effects to diabetic cardiomyopa-

thy, there is still no specific therapeutic strategy to manage

diabetic cardiomyopathy, largely due to lack of mechanism

details of cardiomyopathy. It is therefore necessary to

further clarify the pathological mechanisms underlying

diabetic cardiomyopathy in future research.
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